首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier–Stokes equations are used to model the flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid–structure interaction problem in the limit when the ratio between the radius and the length of the tube, , tends to zero. We obtain the reduced equations that are of Biot type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid–structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications include blood flow through large human arteries. To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005).  相似文献   

2.
The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificial boundaries. Toward an optimal mesh design in that context, we propose a method based on the weighted a posteriori error estimation of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torque acting on the solid body in the weak formulation. Information given by the solution of an adequate dual problem allows one to control the discretization error of given functionals. The analysis encompasses the control of the free fall velocity, the orientation of the body, the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation problem validate the method. To cite this article: V. Heuveline, C. R. Mecanique 333 (2005).  相似文献   

3.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

4.
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008).  相似文献   

5.
The thermal contact between layers plays a key role in the behaviour of composite particles (mechanofused) subjected to a high temperature jet (example of two layers metal/ceramic particles under plasma spraying). This work underlines the interest of considering a thermal contact resistance varying with the melting state of the two components along the full process. The computational model considers the time-dependent state of the particle during its flight with coupled transfers and solid/liquid/vapor phase changes. To cite this article: M. Bouneder et al., C. R. Mecanique 336 (2008).  相似文献   

6.
7.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).

Résumé

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).  相似文献   

8.
9.
A direct numerical scheme is developed to study the temporal amplification of a 2D disturbance in plane Poiseuille flow. The transient non-linear Navier–Stokes equations are applied in a region of wavelength moving with the wave propagation speed. The complex amplitude involved in the perturbation functions is considered as the initial input of the non-linear stability equations. In this study a fully implicit finite difference scheme with five points in the flow direction and three points in the normal direction is developed so that numerical simulation of the amplification of a two-dimensional temporal disturbance in plane Poiseuille flow can be investigated. The growth and decay of the disturbance with time are presented and neutral stability curves which are in good agreement with existing solutions can be determined. The critical conditions as a function of the amplitude A0 of the disturbance are presented. Fixing the wavelength, the Navier–Stokes equations are solved up to Re=10,000 a friction factor increasing with Reynolds number is observed. The 2D non-linear behaviour of the streamfunction, vorticity and velocity components at Re=10,000 are also exhibited. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The method of asymptotic partial domain decomposition for thin tube structures (finite unions of thin cylinders) is revisited. Its application to the Newtonian and non-Newtonian flows in great systems of vessels is considered. The possibility of a parallelization of its algorithm is discussed for linear and non-linear models.  相似文献   

11.
A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when inertial effects are negligible. In addition to the relevant boundary-integral equations, the numerical implementation and a few convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated the same settling velocity. To cite this article: A. Sellier, C. R. Mecanique 332 (2004).

Résumé

On propose une approche originale pour déterminer le mouvement d'une assemblée de particules solides et de formes arbitraires soumise à l'action de la pesanteur dans l'approximation de Stokes. Outre les intégrales de frontière et la méthode numérique associées on présente quelques comparaisons et examine le cas de deux configurations de sphères et ellipsoides de révolution équivalents, c'est-à-dire dotés lorsqu'ils sont seuls de la même vitesse de sédimentation. Pour citer cet article : A. Sellier, C. R. Mecanique 332 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号