首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments. To cite this article: R. Ben Fatma et al., C. R. Mecanique 335 (2007).  相似文献   

2.
We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier–Stokes equations are used to model the flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid–structure interaction problem in the limit when the ratio between the radius and the length of the tube, , tends to zero. We obtain the reduced equations that are of Biot type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid–structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications include blood flow through large human arteries. To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005).  相似文献   

3.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).

Résumé

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).  相似文献   

4.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   

5.
A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when inertial effects are negligible. In addition to the relevant boundary-integral equations, the numerical implementation and a few convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated the same settling velocity. To cite this article: A. Sellier, C. R. Mecanique 332 (2004).

Résumé

On propose une approche originale pour déterminer le mouvement d'une assemblée de particules solides et de formes arbitraires soumise à l'action de la pesanteur dans l'approximation de Stokes. Outre les intégrales de frontière et la méthode numérique associées on présente quelques comparaisons et examine le cas de deux configurations de sphères et ellipsoides de révolution équivalents, c'est-à-dire dotés lorsqu'ils sont seuls de la même vitesse de sédimentation. Pour citer cet article : A. Sellier, C. R. Mecanique 332 (2004).  相似文献   

6.
We give numerical results on the modification of the drag force Fx exerted on a sphere positioned eccentrically and moving at very low Reynolds number, at constant velocity within and along a cylindrical tube. The numerical results computed by Lattice-Boltzmann method or by finite volume formulation are in good agreement with the experimental results obtained by Ambari et al. (J. Fluid Mech. 149 (1984) 235–253). In particular, they confirm the existence of a minimum of the force Fx away from the axis of the cylinder and a sharp increase when the sphere approaches the sidewall. To cite this article: T. Godin et al., C. R. Mecanique 330 (2002) 837–842.  相似文献   

7.
8.
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008).  相似文献   

9.
A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. To cite this article: B. Amaziane, M. Jurak, C. R. Mecanique 336 (2008).  相似文献   

10.
Data assimilation is used to couple numerical simulations and laboratory experiments of unsteady fluid flows in a stratified, rotating fluid. The experiments are performed on the large Coriolis turntable (Grenoble) and the simulations are performed with a multi-layer shallow water model. Sequential assimilation of high-resolution CIV (Correlation Image Velocimetry) measurements drives the numerical model close to the experimental flow and provides an estimation of all the flow variables at each time and each point. It is then possible (i) to analyse the flow dynamics in details, (ii) to determine the model errors starting from a realistic initial condition and (iii) to test the assimilation scheme when a reduced set of data is assimilated. To illustrate this, some results on the baroclinic instability of a two-layer vortex are presented. To cite this article: M. Galmiche et al., C. R. Mecanique 331 (2003).  相似文献   

11.
A modified Terzaghi principle is proposed to describe the influence of locally coupled electro-chemo-mechanical processes in highly compacted swelling clays upon the form of the macroscopic modified effective stress principle. The two-scale model is derived using the homogenization procedure to upscale the microscopic behavior of a two-phase system composed of clay particles saturated by a completely dissociated electrolyte aqueous solution. Numerical experiments are performed to illustrate the results in a particular cell geometry. To cite this article: M.A. Murad, C. Moyne, C. R. Mecanique 330 (2002) 865–870.  相似文献   

12.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

13.
This Note is devoted to the experimental verification of the Onsager's reciprocal relations in the particular case of electro-osmosis and electro-filtration. A special set up has been designed to carry out the measurements of both the electro-osmotic permeability and the streaming potential. This has been performed by using a natural material i.e., saturated kaolinite. To cite this article: K. Beddiar et al., C. R. Mecanique 330 (2002) 893–898.  相似文献   

14.
The thermal contact between layers plays a key role in the behaviour of composite particles (mechanofused) subjected to a high temperature jet (example of two layers metal/ceramic particles under plasma spraying). This work underlines the interest of considering a thermal contact resistance varying with the melting state of the two components along the full process. The computational model considers the time-dependent state of the particle during its flight with coupled transfers and solid/liquid/vapor phase changes. To cite this article: M. Bouneder et al., C. R. Mecanique 336 (2008).  相似文献   

15.
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh–Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).  相似文献   

16.
Ramjets are very sensitive to instabilities and their numerical predictions can only be addressed adequately by Large Eddy Simulation (LES). With this technique, solvers can be implicit or explicit and handle structured, unstructured or hybrid meshes, etc. Turbulence and combustion models are other sources of differences. The impact of these options is here investigated for the ONERA ramjet burner. To do so, two LES codes developed by ONERA and CERFACS compute one stable operating condition. Preliminary LES results of the two codes underline the overall robustness of LES. Mean flow features at the various critical sections are reasonably well predicted by both codes. Disagreement mainly appear in the chamber where combustion positions differ pointing to the importance of the combustion and subgrid mixing models. The two LES produce different energy containing motions. With CEDRE, a low frequency dominates while AVBP produces different ranges of low frequencies that can be linked with acoustic modes of the configuration. To cite this article: A. Roux et al., C. R. Mecanique 337 (2009).  相似文献   

17.
The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificial boundaries. Toward an optimal mesh design in that context, we propose a method based on the weighted a posteriori error estimation of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torque acting on the solid body in the weak formulation. Information given by the solution of an adequate dual problem allows one to control the discretization error of given functionals. The analysis encompasses the control of the free fall velocity, the orientation of the body, the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation problem validate the method. To cite this article: V. Heuveline, C. R. Mecanique 333 (2005).  相似文献   

18.
19.
We formulate nonlinear integro-differential equation for the averaged collective Hamiltonian of a gas of interacting two-dimensional vortices, derive its analytical solution, and discuss the equilibrium, axially-symmetrical, probability distributions that are possible for such a model. We also theoretically prove that the probability distribution for a system of 2D point vortices takes a form similar to the Gibbs distribution, but point out that the physical fundamentals of such a system differ from the standard theory of interacting particles. Furthermore, we find thermodynamical functions for positive and negative “temperature” of the system, and point out that the states with positive “temperature” correspond to stationary bell-shape vortex distributions, while the states with negative “temperature” correspond to distributions localized near container walls. To cite this article: E. Bécu et al., C. R. Mecanique 336 (2008).  相似文献   

20.
Strained flames are commonly used to study the structure of reactive layers and describe the local properties of turbulent combustion. This model is attractive because constant strain rate flames only depend on a transverse coordinate and can be treated as a one-dimensional problem. This configuration is considered in a multidimensional context in which the strained flow is obtained by two counterflowing streams of reactants. It is used to examine the structure of transcritical strained flames in which one or two reactants are injected at a high pressure exceeding the critical value while their temperature is below the critical value. Calculations are carried out in a two-dimensional domain to test numerical models developed for multidimensional simulations and test thermodynamic and transport models devised to deal with high pressure real gas effects. Multidimensional strained flame calculations carried out in this study serve to check the validity of a new version of a Navier–Stokes flow solver (AVBP) conceived to deal with transcritical combustion of interest to liquid propellant rocket applications. This article describes the basic elements of such simulations and discusses results of calculations. It is shown that the calculated multidimensional strained flames have the expected features in terms of structure and response to the imposed strain rate. To cite this article: L. Pons et al., C. R. Mecanique 337 (2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号