首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Neuroinflammation is the cornerstone of most neuronal disorders, particularly neurodegenerative diseases. During the inflammatory process, various pro-inflammatory cytokines, chemokines, and enzymes—such as interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthases (iNOS), inhibitory kappa kinase (IKK), and inducible nitric oxide (NO)—are over-expressed in response to every stimulus. Methods: In the present study, we focused on the anti-neuroinflammatory efficacy of (2E,4E)-N,5-bis(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamide, encoded D5. We investigated the efficacy of D5 on the upstream and downstream products of inflammatory pathways in CHME3 and SVG cell lines corresponding to human microglia and astrocytes, respectively, using various in silico, in vitro, and in situ techniques. Results: The results showed that D5 significantly reduced the level of pro-inflammatory cytokines by up-regulating PPAR-γ expression and suppressing IKK-β, iNOS, NO production, and NF-κB activation in inflamed astrocytes (SVG) and microglia (CHME3) after 24 h of incubation. The data demonstrated remarkably higher efficacy of D5 compared to ASA (Aspirin) in reducing NF-κB-dependent neuroinflammation. Conclusions: We observed that the functional-group alteration had an extreme influence on the levels of druggability and the immunomodulatory properties of two analogs of piperamide, D5, and D4 ((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(4-(hydroxymethyl)phenyl)penta-2,4-dienamide)). The present study suggested D5 as a potential anti-neuroinflammatory agent for further in vitro, in vivo, and clinical investigations.  相似文献   

2.
    
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.  相似文献   

3.
    
Angiotensin (Ang) II is well-known to have potent pro-oxidant and pro-inflammatory effects in the brain. Extensive crosstalk between the primary Ang II receptor, Ang type 1 receptor (AT1R), and the cannabinoid type 1 receptor (CB1R) has been demonstrated by various groups in the last decade. Since activation of glial CB1R has been demonstrated to play a key role in the resolution of inflammatory states, we investigated the role of Ang II (100 nM) and/or ACEA (10 nM), a potent CB1R-specific agonist in the regulation of inflammatory markers in astrocytes from spontaneously hypertensive rats (SHR) and Wistar rats. Astrocytes were cultured from brainstems and cerebellums of SHR and Wistar rats and assayed for IL1β and IL10 gene expression and secreted fraction, in treated and non-treated cells, by employing qPCR and ELISA, respectively. mRNA expression of both IL10 and IL1β were significantly elevated in untreated brainstem and cerebellar astrocytes isolated from SHR when compared to Wistar astrocytes. No changes were observed in the secreted fraction. While ACEA-treatment resulted in a significant increase in IL10 gene expression in Wistar brainstem astrocytes (Log2FC ≥ 1, p < 0.05), its effect in SHR brainstem astrocytes was diminished. Ang II treatment resulted in a strong inhibitory effect on IL10 gene expression in astrocytes from both brain regions of SHR and Wistar rats (Log2FC ≤ −1, p < 0.05), and an increase in IL1β gene expression in brainstem astrocytes from both strains (Log2FC ≥ 1, p < 0.05). Co-treatment of Ang II and ACEA resulted in neutralization of Ang II-mediated effect in Wistar brainstem and cerebellar astrocytes, but not SHR astrocytes. Neither Ang II nor ACEA resulted in any significant changes in IL10 or IL1β secreted proteins. These data suggest that Ang II and ACEA have opposing roles in the regulation of inflammatory gene signature in astrocytes isolated from SHR and Wistar rats. This however does not translate into changes in their secreted fractions.  相似文献   

4.
    
Huperzine A (HupA), an alkaloid found in the club moss Huperzia serrata, has been used for centuries in Chinese folk medicine to treat dementia. The effects of this alkaloid have been attributed to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), acting as an acetylcholinesterase inhibitor (AChEI). The biological functions of HupA have been studied both in vitro and in vivo, and its role in neuroprotection appears to be a good therapeutic candidate for Alzheimer´s disease (AD). Here, we summarize the neuroprotective effects of HupA on AD, with an emphasis on its interactions with different molecular signaling avenues, such as the Wnt signaling, the pre- and post-synaptic region mechanisms (synaptotagmin, neuroligins), the amyloid precursor protein (APP) processing, the amyloid-β peptide (Aβ) accumulation, and mitochondrial protection. Our goal is to provide an integrated overview of the molecular mechanisms through which HupA affects AD.  相似文献   

5.
    
Excessive inflammatory reaction aggravates brain injury and hinders the recovery of neural function in nervous system diseases. Microglia, as the major players of neuroinflammation, control the progress of the disease. There is an urgent need for effective non-invasive therapy to treat neuroinflammation mediated by microglia. However, the lack of specificity of anti-inflammatory agents and insufficient drug dose penetrating into the brain lesion area are the main problems. Here, we evaluated a series of calixarenes and found that among them the self-assembling architecture of amphiphilic sulfonatocalix[8]arene (SC8A12C) had the most potent ability to suppress neuroinflammation in vitro and in vivo. Moreover, SC8A12C assemblies were internalized into microglia through macropinocytosis. In addition, after applying the SC8A12C assemblies to the exposed brain tissue, we observed that SC8A12C assemblies penetrated into the brain parenchyma and eliminated the inflammatory factor storm, thereby restoring neurobiological functions in a mouse model of traumatic brain injury.  相似文献   

6.
    
Inflammaging is a term used to describe the tight relationship between low-grade chronic inflammation and aging that occurs during physiological aging in the absence of evident infection. This condition has been linked to a broad spectrum of age-related disorders in various organs including the brain. Inflammaging represents a highly significant risk factor for the development and progression of age-related conditions, including neurodegenerative diseases which are characterized by the progressive dysfunction and degeneration of neurons in the brain and peripheral nervous system. Curcumin is a widely studied polyphenol isolated from Curcuma longa with a variety of pharmacologic properties. It is well-known for its healing properties and has been extensively used in Asian medicine to treat a variety of illness conditions. The number of studies that suggest beneficial effects of curcumin on brain pathologies and age-related diseases is increasing. Curcumin is able to inhibit the formation of reactive-oxygen species and other pro-inflammatory mediators that are believed to play a pivotal role in many age-related diseases. Curcumin has been recently proposed as a potential useful remedy against neurodegenerative disorders and brain ageing. In light of this, our current review aims to discuss the potential positive effects of Curcumin on the possibility to control inflammaging emphasizing the possible modulation of inflammaging processes in neurodegenerative diseases.  相似文献   

7.
    
Neurodegenerative diseases (NDDs) are the main cause of dementia in the elderly, having no cure to date, as the currently available therapies focus on symptom remission. Most NDDs will progress despite treatment and eventually result in the death of the patient after several years of a burden on both the patient and the caregivers. Therefore, it is necessary to investigate agents that tackle the disease pathogenesis and can efficiently slow down or halt disease progression, with the hope of curing the patients and preventing further burden and mortality. Accordingly, recent research has focused on disease-modifying treatments with neuroregenerative or neuroprotective effects. For this purpose, it is necessary to understand the pathogenesis of NDDs. It has been shown that oxidative stress plays an important role in the damage to the central nervous system and the progression of neurodegenerative disorders. Furthermore, mitochondrial dysfunction and the accumulation of unfolded proteins, including beta-amyloid (Aβ), tau proteins, and α-synuclein, have been suggested. Accordingly, cellular and molecular studies have investigated the efficacy of several natural compounds (herbs and nutritional agents) for their neuroprotective and antioxidative properties. The most popular herbs suggested for the treatment and/or prevention of NDDs include Withania somnifera (ashwagandha), ginseng, curcumin, resveratrol, Baccopa monnieri, and Ginkgo biloba. In some herbs, such as ginseng, preclinical and clinical evidence are available for supporting its effectiveness; however, in some others, only cellular and animal studies are available. In line with the scant literature in terms of the effectiveness of herbal compounds on NDDs, there are also other herbal agents that have been disregarded. Picein is one of the herbal agents that has been investigated in only a few studies. Picein is the active ingredient of several herbs and can be thus extracted from different types of herbs, which makes it more available. It has shown to have anti-inflammatory properties in cellular and plant studies; however, to date, only one study has suggested its neuroprotective properties. Furthermore, some cellular studies have shown no anti-inflammatory effect of picein. Therefore, a review of the available literature is required to summarize the results of studies on picein. To date, no review study seems to have addressed this issue. Thus, in the present study, we gather the available information about the antioxidative and potential neuroprotective properties of picein and its possible effectiveness in treating NDDs. We also summarize the plants from which picein can be extracted in order to guide researchers for future investigations.  相似文献   

8.
    
We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are implicated in the “Cholinergic anti-inflammatory pathway”, we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1β and TNFα mRNA levels. Furthermore, central (intracerebroventricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.  相似文献   

9.
    
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.  相似文献   

10.
    
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called “spice of life”, in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer’s Diseases, Parkinson’s Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.  相似文献   

11.
Mn-SOD模拟物及其在神经退行性疾病中的药用前景   总被引:11,自引:0,他引:11  
本文通过分析神经退行性疾病与线粒体机能障碍、自由基损伤的关系,主要讨论了Mn-SOD模拟物作为自由基清除剂对活性氧化合物的清除机理、药用优势,并总结了近年来有关Mn-SOD模拟物在神经退行性疾病防治方面的研究近况及潜在应用前景。  相似文献   

12.
《色谱》2025,43(5)
外泌体是一种由细胞分泌的纳米级脂质双层囊泡,携带蛋白质、核酸、脂类等重要生物活性分子,广泛存在于血液、脑脊液等体液中。它们通过内吞作用、配体-受体相互作用或直接膜融合等多种机制,将生物活性分子传递给靶细胞,在细胞间通讯中发挥着至关重要的作用。作为天然的药物传递系统,外泌体具有生物相容性、高透过性、靶向性和含天然治疗分子等优势,能够提高药物递送的精确性和疗效,从而成为向中枢神经系统递送药物的理想载体。因此,外泌体在中枢神经系统疾病的诊断与治疗中显示出巨大的潜力。本文系统综述了近年来外泌体在神经退行性疾病中的研究进展,重点探讨了其在疾病发病机制、病程进展、诊断和治疗中的作用,旨在为神经退行性疾病的早期诊断与治疗提供理论依据与研究参考。  相似文献   

13.
蛋白质组学是在整体水平上研究细胞、组织或生物体蛋白质组成及变化规律的科学.与传统的生物学研究相比,蛋白质组学具有快速、灵敏、高通量的优点.神经退行性疾病是一类由神经系统内特定神经细胞的进程性病变或丢失而导致神经功能障碍的疾病,严重危害人类健康.近年来,基于质谱的蛋白质组学技术在神经退行性疾病的研究中得到了广泛应用.本文简要介绍了蛋白质组学在样品分离、多肽定量、质谱检测及生物标志物临床验证等方面的技术发展,并结合实例综述了基于质谱的蛋白质组学在神经退行性疾病生物标志物发现与验证中的研究进展.  相似文献   

14.
15.
    
(1) Background: Astrocytes, the most abundant cell type in the central nervous system, are essential to tune individual-to-network neuronal activity. Senescence in astrocytes has been discovered as a crucial contributor to several age-related neurological diseases. Here, we aim to observe if astrocytes demonstrate senescence in the process of brain aging, and whether they bring adverse factors, especially harm to neuronal cells. (2) Methods: In vivo, mice were housed for four, 18, and 26 months. An in vitro cell model of aged astrocytes was constructed by serial passaging until passage 20–25, and those within 1–5 were invoked as young astrocytes. Meanwhile, an oxidative induced astrocyte senescence model was constructed by H2O2 induction. (3) Results: In vitro aged astrocytes all showed manifest changes in several established markers of cellular senescence, e.g., P53, P21, and the release of inflammatory cytokine IL-6 and SA-β-gal positive cells. Results also showed mitochondrial dysfunction in the oxidative stress-induced astrocyte senescence model and treatment of berberine could ameliorate these alterations. Two types of senescent astrocytes’ conditioned medium could impact on neuron apoptosis in direct or indirect ways. (4) Conclusions: Senescent astrocyte might affect neurons directly or indirectly acting on the regulation of normal and pathological brain aging.  相似文献   

16.
    
Modulation of the endocannabinoid system (ECS) is of great interest for its therapeutic relevance in several pathophysiological processes. The CB2 subtype is largely localized to immune effectors, including microglia within the central nervous system, where it promotes anti-inflammation. Recently, a rational drug design toward precise modulation of the CB2 active site revealed the novelty of Pyrrolo[2,1-c][1,4]benzodiazepines tricyclic chemotype with a high conformational similarity in comparison to the existing leads. These compounds are structurally unique, confirming their chemotype novelty. In our continuing search for new chemotypes as selective CB2 regulatory molecules, following SAR approaches, a total of 17 selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs were synthesized and tested for their ability to bind to the CB1 and CB2 receptor orthosteric sites. A competitive [3H]CP-55,940 binding screen revealed five compounds that exhibited >60% displacement at 10 μM concentration. Further concentration-response analysis revealed two compounds, 4k and 4q, as potent and selective CB2 ligands with sub-micromolar activities (Ki = 146 nM and 137 nM, respectively). In order to support the potential efficacy and safety of the analogs, the oral and intravenous pharmacokinetic properties of compound 4k were sought. Compound 4k was orally bioavailable, reaching maximum brain concentrations of 602 ± 162 ng/g (p.o.) with an elimination half-life of 22.9 ± 3.73 h. Whether administered via the oral or intravenous route, the elimination half-lives ranged between 9.3 and 16.7 h in the liver and kidneys. These compounds represent novel chemotypes, which can be further optimized for improved affinity and selectivity toward the CB2 receptor.  相似文献   

17.
    
Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer’s disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson’s disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system.  相似文献   

18.
    
Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)—multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.  相似文献   

19.
    
Aggregation of polyglutamine peptides with β‐sheet structures is related to some important neurodegenerative diseases such as Huntington's disease. However, it is not clear how polyglutamine peptides form the β‐sheets and aggregate. To understand this problem, we performed all‐atom replica‐exchange molecular dynamics simulations of one and two polyglutamine peptides with 10 glutamine residues in explicit water molecules. Our results show that two polyglutamine peptides mainly formed helix or coil structures when they are separated, as in the system with one‐polyglutamine peptide. As the interpeptide distance decreases, the intrapeptide β‐sheet structure sometimes appear as an intermediate state, and finally the interpeptide β‐sheets are formed. We also find that the polyglutamine dimer tends to form the antiparallel β‐sheet conformations rather than the parallel β‐sheet, which is consistent with previous experiments and a coarse‐grained molecular dynamics simulation. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
    
Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60–120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral–contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号