首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli and Salmonella are two of the most common bacterial pathogens involved in foodborne and waterborne related deaths. Hence, it is critical to develop rapid and sensitive detection strategies for near-outbreak applications. Reported is a simple and specific assay to detect as low as 1 CFU mL−1 of E. coli in water within 6 hours by targeting the bacteria's surface protease activity. The assay relies on polythiophene acetic acid (PTAA) as an optical reporter and a short unlabeled peptide (LL37FRRV) previously optimized as a substrate for OmpT, an outer-membrane protease on E. coli. LL37FRRV interacts with PTAA to enhance its fluorescence while also inducing the formation of a helical PTAA-LL37FRRV construct, as confirmed by circular dichroism. However, in the presence of E. coli LL37FRRV is cleaved and can no longer affect the conformations and optical properties of PTAA. This ability to distinguish between an intact and cleaved peptide was investigated in detail using LL37FRRV sequence variants.  相似文献   

2.
E. coli and Salmonella are two of the most common bacterial pathogens involved in foodborne and waterborne related deaths. Hence, it is critical to develop rapid and sensitive detection strategies for near‐outbreak applications. Reported is a simple and specific assay to detect as low as 1 CFU mL?1 of E. coli in water within 6 hours by targeting the bacteria's surface protease activity. The assay relies on polythiophene acetic acid (PTAA) as an optical reporter and a short unlabeled peptide (LL37FRRV) previously optimized as a substrate for OmpT, an outer‐membrane protease on E. coli. LL37FRRV interacts with PTAA to enhance its fluorescence while also inducing the formation of a helical PTAA‐LL37FRRV construct, as confirmed by circular dichroism. However, in the presence of E. coli LL37FRRV is cleaved and can no longer affect the conformations and optical properties of PTAA. This ability to distinguish between an intact and cleaved peptide was investigated in detail using LL37FRRV sequence variants.  相似文献   

3.
4.
Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose‐neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi‐subunit membrane protein assembly. Furthermore, a detergent structure–property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed.  相似文献   

5.
Accumulation and aggregation of the intrinsically disordered protein α-synuclein (α-Syn) into amyloid fibrils are hallmarks of a series of heterogeneous neurodegenerative disorders, known as synucleinopathies and most notably Parkinson's disease (PD). The crucial role of α-Syn aggregation in PD makes it an attractive target for the development of disease-modifying therapeutics that would inhibit α-Syn aggregation or disrupt its preformed fibrillar assemblies. To this end, we have designed and synthesized two naphthoquinone–dopamine-based hybrid small molecules, NQDA and Cl-NQDA, and demonstrated their ability to inhibit in vitro amyloid formation by α-Syn using ThT assay, CD, TEM, and Congo red birefringence. Moreover, these hybrid molecules efficiently disassembled preformed fibrils of α-Syn into nontoxic species, as evident from LUV leakage assay. NQDA and Cl-NQDA were found to have low cytotoxicity and they attenuated the toxicity induced by α-Syn towards SH-SY5Y neuroblastoma cells. NQDA was found to efficiently cross an in vitro human blood–brain barrier model. These naphthoquinone–dopamine based derivatives can be an attractive scaffold for therapeutic design towards PD.  相似文献   

6.
7.
A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV-inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX ( 3 a ) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm , respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV1.5, with an IC50 value of 94.1 nm . Derivatives 3 a – d and 3 f showed low recovery rates from NaV1.2 subtype (ca 45–79 %) compared to natural dcSTX ( 2 ), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717.  相似文献   

8.
《化学:亚洲杂志》2017,12(3):341-346
Amyloid β‐peptide (Aβ) fibrillation is a major hallmark of Alzheimer's disease (AD). Inhibition of Aβ fibrillation is thus considered to be an effective strategy for AD prevention and treatment. Here we show that para ‐sulfonatocalix[n ]arenes (SC[n ]A, n =4, 6, 8), a class of amphiphilic calixarene derivatives, can bind to Aβ42 through nonspecific and multipoint hydrophobic interactions. Their binding leads to a pronounced delay in β‐sheet adoption and formation of multiple secondary structures of the peptide, accompanied by changes at the level of the fibrillary architecture. Furthermore, the ζ‐potential value of Aβ42 incubated with SC[6/8]A decreased, which correlated with the reduction of amyloid cytotoxicity. Overall, the SC[n ]A effectively inhibits Aβ42 fibrillation and reduces amyloid cytotoxicity, and SC[8]A showed the best performance among the three macrocycles, possibly owing to its having the strongest interactions with Aβ42.  相似文献   

9.
Noncanonical peptides occur frequently in Nature, and often display high bioactivity. However, the lack of tractable systems for the synthesis of diverse libraries of such peptides has thus far hampered their development as drugs. Genetic reprogramming techniques, in which noncanonical amino acids may be incorporated into peptides, have largely removed this limitation. This Concept article outlines the development of these techniques with an emphasis on drug discovery.  相似文献   

10.
11.
In this work, we prepared a novel series of cationic amphiphiles denoted as the Py‐cations (Py‐Gly, Py‐Ala, Py‐Cap, Py‐G1‐Lys and Py‐G2‐Lys) bearing fluorescent pyrene and various hydrocarbon linkers between the pyrene hydrophobe and cationic block. Employing these new cationic amphiphiles with pyrene as the fluorescent probe, the interactions between these Py‐cations and plasmid DNA (pDNA) in distilled water and 0.1 M PBS buffer solution have been explored by means of UV‐vis and fluorescent spectrometers, and ethidium bromide dye displacement and agarose‐gel retardant assays were also implemented to evaluate their pDNA binding affinities in aqueous solution. Furthermore, the average sizes and morphologies of self‐assembled Py‐cation/pDNA lipoplex aggregates were examined by dynamic laser light scattering (DLS) and atomic force microscopy (AFM). It was found that these fluorescent cationic amphiphiles showed blue fluorescence emission of pyrene probe at λ = 340 nm in distilled water while their interactions with pDNA led to new strong green emission at λ = 490 nm, and this may be due to the stacking of pyrene and new formation of excimers via the rigid pDNA templated self‐assembly. It was also revealed that the binding between new Py‐cations and pDNA in aqueous solution was strongly influenced by the Py‐cation hydrophobicity, charges of the cation and the presence of electrolytes. With respect to the Py‐cation/pDNA aggregate morphologies, very interesting 1‐D hybrid nanofibers were predominantly observed by AFM for the Py‐Cap/pDNA aggregates. In addition, utilizing a COS‐7 cell‐line, in‐vitro cellular uptakes of new cationic amphiphiles with pyrene probe were studied and visualized by fluorescent microscopy. As a result, this may provide a new approach to investigate the interactions between synthetic cationic lipids and nucleic acids, and pave an alternative clue to design new organic gene delivery carriers.

  相似文献   


12.
To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl‐substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane–cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b , 8 c , and 9 b preserved the ATPase function of BmrA, an ATP‐binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a , 8 b , 8 f , 9 a , and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G‐protein‐coupled adenosine receptor A2AR. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.  相似文献   

13.
The p53 protein is the cell's principal bastion of defense against tumor-associated DNA damage. Commonly referred as a "guardian of the genome", p53 is responsible for determining the fate of the cell when the integrity of its genome is damaged. The development of tumors requires breaching this defense line. All known tumor cells either mutate the p53 gene, or in a similar number of cases, use internal cell p53 modulators, Mdm2 and Mdmx proteins, to disable its function. The release of functional p53 from the inhibition by Mdm2 and Mdmx should in principle provide an efficient, nongenotoxic means of cancer therapy. In recent years substantial progress has been made in developing novel p53-activating molecules thanks to several reported crystal structures of Mdm2/x in complex with p53-mimicking peptides and nonpeptidic drug candidates. Understanding the structural attributes of ligand binding holds the key to developing novel, highly effective, and selective drug candidates. Two low-molecular-weight compounds have just recently progressed into early clinical studies.  相似文献   

14.
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self‐assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic “thermal tag” with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily‐selective probes against two clinically important epigenetic enzymes: FTO ( 7 ; IC50=2.6 μm ) and ALKBH3 ( 8 ; IC50=3.7 μm ). To date, this is the first report of a subfamily‐selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.  相似文献   

15.
16.
The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28–65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides’ antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0–3.5 µM) and binding affinities (Kd = 0.9–7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.  相似文献   

17.
The first synthesis of the anti‐TB cyclic peptide callyaerin A ( 1 ), containing a rare (Z)‐2,3‐diaminoacrylamide bridging motif, is reported. Fmoc‐formylglycine‐diethylacetal was used as a masked equivalent of formylglycine in the synthesis of the linear precursor to 1 . Intramolecular cyclization between the formylglycine residue and the N‐terminal amine in the linear peptide precursor afforded the macrocyclic natural product 1 . Synthetic 1 possessed potent anti‐TB activity (MIC100=32 μm ) while its all‐amide congener was inactive. Variable‐temperature NMR studies of both the natural product and its all‐amide analogue revealed the extraordinary rigidity imposed by this diaminoacrylamide unit on peptide conformation. The work reported herein pinpoints the intrinsic role that the (Z)‐2,3‐diaminoacrylamide moiety confers on peptide bioactivity.  相似文献   

18.
Collaborative research projects between chemists, biologists, and medical scientists have inevitably produced many useful drugs, biosensors, and medical instrumentation. Organic chemistry lies at the heart of drug discovery and development. The current range of organic synthetic methodologies allows for the construction of unlimited libraries of small organic molecules for drug screening. In translational research projects, we have focused on the discovery of lead compounds for three major diseases: Alzheimer's disease (AD), breast cancer, and viral infections. In the AD project, we have taken a rational‐design approach and synthesized a new class of tricyclic pyrone (TP) compounds that preserve memory and motor functions in amyloid precursor protein (APP)/presenilin‐1 (PS1) mice. TPs could protect neuronal death through several possible mechanisms, including their ability to inhibit the formation of both intraneuronal and extracellular amyloid β (Aβ) aggregates, to increase cholesterol efflux, to restore axonal trafficking, and to enhance long‐term potentiation (LTP) and restored LTP following treatment with Aβ oligomers. We have also synthesized a new class of gap‐junction enhancers, based on substituted quinolines, that possess potent inhibitory activities against breast‐cancer cells in vitro and in vivo. Although various antiviral drugs are available, the emergence of viral resistance to existing antiviral drugs and various understudied viral infections, such as norovirus and rotavirus, emphasizes the demand for the development of new antiviral agents against such infections and others. Our laboratories have undertaken these projects for the discovery of new antiviral inhibitors. The discussion of these aforementioned projects may shed light on the future development of drug candidates in the fields of AD, cancer, and viral infections.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号