首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective recognition of nucleotides with synthetic receptors is an emerging direction to solve a series of nucleic acid-related challenges in biochemistry. Towards this goal, a new aza-cyclophane with two different dyes, naphthalimide and pyrene, connected through a triamine linker has been synthesized and studied for the ability to bind and detect nucleoside triphosphates in an aqueous solution. The receptor shows Foerster resonance energy transfer (FRET) in fluorescence spectra upon excitation in DMSO, which is diminished dramatically in the presence of water. According to binding studies, the receptor has a preference to bind ATP (adenosine triphosphate) and CTP (cytidine triphosphate) with a “turn-on” fluorescence response. Two separate emission bands of dyes allow one to detect nucleotides in a ratiometric manner in a broad concentration range of 10−5–10−3 M. Spectroscopic measurements and quantum chemical calculations suggest the formation of receptor–nucleotide complexes, which are stabilized by dispersion interactions between a nucleobase and dyes, while hydrogen bonding interactions of nucleobases with the amine linkers are responsible for selectivity.  相似文献   

2.
Molecular sensors able to detect ions are of interest due to their potential application in areas such as pollutant sequestration. Alkynylplatinum(II) terpyridine complexes with an amide-based receptor moiety have been synthesized and characterized. Their anion binding properties based on host–guest interactions have been examined with the use of UV-vis absorption and emission spectral titration studies. Spectral changes were observed for both complexes upon the addition of spherical and nonspherical anions. Their titration profiles were shown to be in good agreement with theoretical results predicting a 1:1 binding model, and the binding constants were determined from the experimental data. Drastic color changes from yellow to orange–red were observed for one of the complexes upon titration with fluoride (F) ion in acetone. These changes were ascribed to the deprotonation of the amide functionalities induced by F ion, and this was confirmed by the restoration of spectral changes upon addition of trifluoroacetic acid to the F ion–complex mixture as well as by electrospray ionization mass spectrometry (ESI-MS) data.  相似文献   

3.
Intermolecular bonding attraction at π-bonded centers is often described as “electrostatically driven” and given quasi-classical rationalization in terms of a “pi hole” depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO, CN) with simple atomic anions (H, F) or with one another. Such “anti-electrostatic” anion–anion attractions are shown to lead to robust metastable binding wells (ranging up to 20–30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi–Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that “deletion” of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi–Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency (“charge transfer”) rather than envisioned Coulombic properties of unperturbed monomers.  相似文献   

4.
Biothiols are extremely powerful antioxidants that protect cells against the effects of oxidative stress. They are also considered relevant disease biomarkers, specifically risk factors for cardiovascular disease. In this paper, a new procedure for the simultaneous determination of human serum albumin and low-molecular-weight thiols in plasma is described. The method is based on the pre-column derivatization of analytes with a thiol-specific fluorescence labeling reagent, monobromobimane, followed by separation and quantification through reversed-phase high-performance liquid chromatography with fluorescence detection (excitation, 378 nm; emission, 492 nm). Prior to the derivatization step, the oxidized thiols are converted to their reduced forms by reductive cleavage with sodium borohydride. Linearity in the detector response for total thiols was observed in the following ranges: 1.76–30.0 mg mL−1 for human serum albumin, 0.29–5.0 nmol mL−1 for α-lipoic acid, 1.16–35 nmol mL−1 for glutathione, 9.83–450.0 nmol mL−1 for cysteine, 0.55–40.0 nmol mL−1 for homocysteine, 0.34–50.0 nmol mL−1 for N-acetyl-L-cysteine, and 1.45–45.0 nmol mL−1 for cysteinylglycine. Recovery values of 85.16–119.48% were recorded for all the analytes. The developed method is sensitive, repeatable, and linear within the expected ranges of total thiols. The devised procedure can be applied to plasma samples to monitor biochemical processes in various pathophysiological states.  相似文献   

5.
The antibacterial properties of silver are strongly controlled by the redox couple of silver/silver(I). This work reports the influence of phosphate anions on silver nanoparticle oxidation, which is important given the abundance of phosphate species in biological systems. The three different species of anions were found to have a varying degree of influence on silver oxidation with the order PO43−>HPO42−>H2PO4. It was found that in the presence of phosphate anions, the silver oxidation potential shifts to a less positive value, which indicated the increasing ease of the oxidation reaction of silver. Given that the interplay between silver and its cation is crucial to its antibacterial properties and significant concentrations of the HPO42− anion are present at biological pH (near neutral), it is essential that the influence of the dibasic anion (HPO42−) on silver oxidation dynamics be considered for biological systems.  相似文献   

6.
A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polarimetric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity toward both DNA forms (Kb = 2–7 × 105 M−1) and induces a slight stabilization of G4-DNA toward thermally induced unfolding, mostly pronounced for the telomeric quadruplex 22AG. The ligand likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA. Thus, this compound represents one of the rare examples of phosphate-substituted DNA binders. In an aqueous solution, the title compound has a very weak fluorescence intensity (Φfl < 0.01) that increases significantly upon binding to G4-DNA (Φfl = 0.01). In contrast, the association with duplex DNA was not accompanied by such a strong fluorescence light-up effect (Φfl < 0.01). These different fluorimetric responses upon binding to particular DNA forms are proposed to be caused by the different binding modes and may be used for the selective fluorimetric detection of G4-DNA.  相似文献   

7.
Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F and HCO3 among various test anions with high preference for HCO3 (as the tetraethylammonium, TEA+ salt) relative to F (as the TBA+ salt). The bound HCO3 anion was completely released out of the receptors upon the addition of F (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.

The inherent selectivity of anion receptors can be reversed by ion pairing occurring both inside and outside of the receptor cavity.  相似文献   

8.
Two novel artificial receptors, 2,2′-bipyridine derivatives containing phenol group, have been designed and synthesized. The interaction of the receptors containing Schiff base or its reductive system with biologically important anions was determined by UV–vis and 1H NMR titration experiments. Results indicate that receptors 1 and 2 show the strong binding ability for dihydrogen phosphate (H2PO4), fluoride (F), acetate (AcO) and almost no binding ability for chloride (Cl), bromide (Br), iodide (I). At the same time, the strongest binding ability of receptor 1 for H2PO4 among studied anions is not influenced by the existence of other anions; as well as receptor 2 for F. In addition, the binding ability of receptor 1 (Schiff base system) with various anions is stronger than that of receptor 2 (the reductive Schiff base system) due to the difference of electronic effect.  相似文献   

9.
Here, we report a facile route to the synthesizing of a new donor–acceptor complex, L3, using 4-{[(anthracen-9-yl)meth-yl] amino}-benzoic acid, L2, as donor moiety with anthraquinone as an acceptor moiety. The formation of donor–acceptor complex L3 was facilitated via H-bonding and characterized by single-crystal X-ray diffraction. The X-ray diffraction results confirmed the synthesized donor–acceptor complex L3 crystal belongs to the triclinic system possessing the P-1 space group. The complex L3 was also characterized by other spectral techniques, viz., FTIR and UV absorption spectroscopy, which confirmed the formation of new bonds between donor L2 moiety and acceptor anthraquinone molecule. The crystallinity and thermal stability of the newly synthesized complex L3 was confirmed by powdered XRD and TGA analysis and theoretical studies; Hirshfeld surface analysis was performed to define the type of interactions occurring in the complex L3. Interestingly, theoretical results were successfully corroborated with experimental results of FTIR and UV absorption. The density functional theory (DFT) calculations were employed for HOMO to LUMO; the energy gap (∆E) was calculated to be 3.6463 eV. The complex L3 was employed as a photocatalyst for the degradation of MB dye and was found to be quite efficient. The results showed MB dye degraded about 90% in 200 min and followed the pseudo-first-order kinetic with rate constant k = 0.0111 min−1 and R2 = 0.9596. Additionally, molecular docking reveals that the lowest binding energy was −10.8 Kcal/mol which indicates that the L3 complex may be further studied for its biological applications.  相似文献   

10.
Opioid receptors are members of the group of G protein-couple receptors, which have been proven to be effective targets for treating severe pain. The interactions between the opioid receptors and corresponding ligands and the receptor’s activation by different agonists have been among the most important fields in opioid research. In this study, with compound M1, an active metabolite of tramadol, as the clue compound, several aminomethyl tetrahydronaphthalenes were designed, synthesized and assayed upon opioid receptors. With the resultant compounds FW-AII-OH-1 (Ki = 141.2 nM for the κ opioid receptor), FW-AII-OH-2 (Ki = 4.64 nM for the δ opioid receptor), FW-DI-OH-2 (Ki = 8.65 nM for the δ opioid receptor) and FW-DIII-OH-2 (Ki = 228.45 nM for the δ opioid receptor) as probe molecules, the structural determinants responsible for the subtype selectivity and activation mechanisms were further investigated by molecular modeling and molecular dynamics simulations. It was shown that Y7.43 was a key residue in determining the selectivity of the three opioid receptors, and W6.58 was essential for the selectivity of the δ opioid receptor. A detailed stepwise discovered agonist-induced signal transduction mechanism of three opioid receptors by aminomethyl tetrahydronaphthalene compounds was proposed: the 3–7 lock between TM3 and TM7, the DRG lock between TM3 and TM6 and rearrangement of I3.40, P5.50 and F6.44, which resulted in the cooperative movement in 7 TMs. Then, the structural relaxation left room for the binding of the G protein at the intracellular site, and finally the opioid receptors were activated.  相似文献   

11.
An aniline-functionalized naphthalene dialdehyde Schiff base fluorescent probe L with aggregation-induced enhanced emission (AIEE) characteristics was synthesized via a simple one-step condensation reaction and exhibited excellent sensitivity and selectivity towards copper(II) ions in aqueous media with a fluorescence “ turn-off ” phenomenon. The detection limit of the probe is 1.64 × 10−8 mol·L−1. Furthermore, according to the results of the UV-vis/fluorescence titrations, Job’s plot method and 1H-NMR titrations, a 1:2 stoichiometry was identified. The binding constant between L and Cu2+ was calculated to be Ka = 1.222 × 103. In addition, the AIEE fluorescent probe L could be applied to detection in real water samples with satisfactory recoveries in the range 99.10–102.90% in lake water and 98.49–102.37% in tap water.  相似文献   

12.
Due to the great potential of biocompatible cucurbit[7]uril (CB7) and 4-sulfonatocalix[4]arene (SCX4) macrocycles in drug delivery, the confinement of the pharmaceutically important metronidazole as an ionizable model drug has been systematically studied in these cavitands. Absorption and fluorescence spectroscopic measurements gave 1.9 × 105 M−1 and 1.0 × 104 M−1 as the association constants of the protonated metronidazole inclusion in CB7 and SCX4, whereas the unprotonated guests had values more than one order of magnitude lower, respectively. The preferential binding of the protonated metronidazole resulted in 1.91 pH unit pKa diminution upon encapsulation in CB7, but the complexation with SCX4 led to a pKa decrease of only 0.82 pH unit. The produced protonated metronidazole–SCX4 complex induced nanoparticle formation with protonated chitosan by supramolecular crosslinking of the polysaccharide chains. The properties of the aqueous nanoparticle solutions and the micron-sized solid composite produced therefrom by nano spray drying were unraveled. The results of the present work may find application in the rational design of tailor-made self-assembled drug carrier systems.  相似文献   

13.
Macrocyclic arenes laid the foundations of supramolecular chemistry and their study established the fundamentals of noncovalent interactions. Advancing their frontier, here we designed rigidified resorcin[4]arenes that serve as hosts for large nonspherical anions. In one synthetic step, we vary the host''s anion affinity properties by more than seven orders of magnitude. This is possible by engineering electropositive aromatic C–H bond donors in an idealized square planar geometry embedded within the host''s inner cavity. The hydrogen atom''s electropositivity is tuned by introducing fluorine atoms as electron withdrawing groups. These novel macrocycles, termed fluorocages, are engineered to sequester large anions. Indeed, experimental data shows an increase in the anion association constant (Ka) as the number of F atoms increase. The observed trend is rationalized by DFT calculations of Hirshfeld Charges (HCs). Most importantly, fluorocages in solution showed weak-to-medium binding affinity for large anions like [PF6] (102< Ka <104 M−1), and high affinity for [MeSO3] (Ka >106).

Fluorocages: new class of rigidified host utilizing nontraditional C–H hydrogen bonds to capture the nonspherical anions.  相似文献   

14.
An ultra-high performance liquid chromatography tandem mass spectrometry method was developed and validated for the sensitive determination and unambiguous confirmation of residues of per and polyfluorinated alkyl substances (PFAS) in breastmilk, retail milk and infant formulas following two sample preparation methods. Sample pre-treatment was carried out by a simplified QuEChERS method without requiring dSPE or any further clean-up. The method was validated in accordance with the requirements of Commission Decision 657/2002/EC with slight modifications. The method displayed good linearity with R2 ranging from 0.9843–0.9998 for all target PFAS. The recovery and within-laboratory reproducibility of the method (n = 63) were in the range 60–121% and 5–28%, respectively. The decision limit, detection capability and limit of quantitation ranged from 30–60 ng kg−1 to 40–100 ng kg−1 and 5–50 ng kg−1, respectively. Acceptable matrix effect values in the range −45–29% were obtained with uncertainty of measurement lower than 25% for all target PFAS. The method displays its suitability for the sensitive and high-throughput confirmatory analysis of C4–C14 PFAS in breastmilk, dairy milk and infant formulas.  相似文献   

15.
The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices.  相似文献   

16.
The reactions of the tridentate hydrazone ligand, N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional helical coordination chain of [CuL(NCS)]n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2) (where L=CH3C(O)=N–N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu⋅⋅⋅Cu distance of 3.402 (1) Å. The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV–vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205 and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis.  相似文献   

17.
Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor.  相似文献   

18.
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the “COVID-19” disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from −24.02 to −39.33 kcal mol−1, compared to the co-crystallized ligand (−21.39 kcal mol–1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from −32.19 to −50.79 kcal mol–1, comparing to the co-crystallized ligand (binding energy = −62.84 kcal mol–1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.  相似文献   

19.
Chiral cholesteric molecular tweezer 7d was synthesized and its influences on changes in the ultraviolet (UV) and fluorescence spectra of various anions were investigated. The results displayed that molecular tweezer 7d selectively recognized F ions in dimethyl sulfoxide with a detection limit of 5.14 μmol/L, while other anions had little interference. On this basis, a method for the rapid detection of F ions by host molecular tweezer 7d was established, and the naked-eye detection of F was realized through the unique yellow color of the complex solution. According to the determination of F ions in real food samples, it was proved that the established method had good application prospects in F ion detection.  相似文献   

20.
Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl, Br, I, CN, OCN, SCN, NO2, NO3, and ClOn (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br(aq), I(aq), ClO4(aq), and SCN(aq), and also for ClO(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl(aq) ion has a slightly larger CT energy at the interface, but NO3(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号