首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing an ideal and cheap adsorbent for adsorbing heavy metals from aqueous solution has been urgently need. In this study, a novel, effective and low-cost method was developed to prepare the biochar from lettuce waste with H3PO4 as an acidic activation agent at a low-temperature (circa 200 °C) hydrothermal carbonization process. A batch adsorption experiment demonstrated that the biochar reaches the adsorption equilibrium within 30 min, and the optimal adsorption capacity of Cd(II) is 195.8 mg∙g−1 at solution pH 6.0, which is significantly improved from circa 20.5 mg∙g−1 of the original biochar without activator. The fitting results of the prepared biochar adsorption data conform to the pseudo-second-order kinetic model (PSO) and the Sips isotherm model, and the Cd(II) adsorption is a spontaneous and exothermic process. The hypothetical adsorption mechanism is mainly composed of ion exchange, electrostatic attraction, and surface complexation. This work offers a novel and low-temperature strategy to produce cheap and promising carbon-based adsorbents from organic vegetation wastes for removing heavy metals in aquatic environment efficiently.  相似文献   

2.
Highlights
  • Pisum sativum pods was used for producing porous activated carbon materials.
  • •Two chemical methods and two gases were used in the activation processes.
  • •Higher performances were achieved by applying ZnCl2 and CO2 for activation.
  • •The products exhibited large surface areas and high AO7 dye adsorption performances.
  • •RMS study of the AO7 dye removal by produced material was reported.
AbstractThis work demonstrates the preparation of high-surface-area activated carbon (AC) from Pisum sativum pods using ZnCl2 and KOH as activating agents. The influence of CO2 and N2 gases during the carbonization process on the porosity of AC were studied. The highest specific surface area of AC was estimated at 1300 to 1500 m2/g, which presented characteristics of microporous materials. SEM micrographs revealed that chemical activation using an impregnation reagent ZnCl2 increases the porosity of the AC, which in turn leads to an increase in the surface area, and the SEM image showed that particle size diameter ranged between 48.88 and 69.95 nm. The performance of prepared AC for adsorption of Acid Orange 7 (AO7) dye was tested. The results showed that the adsorption percentage by AC (2.5 g/L) was equal to 94.76% after just 15 min, and the percentage of removal increased to be ~100% after 60 min. The maximum adsorption capacity was 473.93 mg g−1. A Langmuir model (LM) shows the best-fitted equilibrium isotherm, and the kinetic data fitted better to the pseudo-second-order and Film diffusion models. The removal of AO7 dye using AC from Pisum sativum pods was optimized using a response factor model (RSM), and the results were reported.  相似文献   

3.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

4.
In this research, we explored the synthesis optimization of the silica-based quaternized adsorption material (SG-VTS-VPQ) and its adsorption behavior for Pu(IV). By optimizing the synthesis process, the grafting amount of 4-vinylpyridine reached 1.25 mmol·g−1. According to the analysis of NMR and XPS, the quaternization rate of pyridine groups reached 91.13%. In the adsorption experiments, the thermodynamic experiment results show that the adsorption of Pu(IV) by SG-VTS-VPQ is more in line with the Langmuir adsorption model and the adsorption type is a typical chemical adsorption; the kinetic results show that adsorption process is more in line with the pseudo first-order kinetic model, and the larger specific surface area of SG-VTS-VPQ plays an important role in the adsorption. The results of the adsorption mechanism show that the adsorption of Pu(IV) by SG-VTS-VPQ is mainly complex anion Pu(NO3)62− and Pu(NO3)5. This research provides in-depth and detailed ideas for the surface modification and application of porous silica gel, and at the same time provides a new way to develop the direction of the analysis of pretreatment materials in the spent fuel reprocessing field.  相似文献   

5.
Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g−1 to 3060 m2·g−1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g−1, a large total pore volume of 3.07 cm3·g−1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g−1 at −196 °C and 4.7 mmol·g−1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g−1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.  相似文献   

6.
Efficient and selective removal of 90Sr is an important process for the safe use of nuclear energy. Herein, we investigate and assess the Sr2+ adsorption properties of a metal-organic framework UiO-66-(COOH)2 functionalized by non-bonded carboxylic groups. This MOF is an exciting class of free carboxylic functionalized MOFs that combine chemical stability with gas sorption, dye elimination, and conductivity. Specifically, we show that uniformly distributed carboxyl and water stability make it accessible for loading Sr2+ without structural changes. The FTIR spectroscopy, PXRD analysis, XPS, and SEM-EDS studies show excellent stability as well as the strong affinity between -COOH active site and Sr2+. This strong coordination interaction guarantees a high adsorption capacity of 114 mg g−1 within 5 h (pH 5 and 298 K). Combined kinetic and thermodynamic studies show that the surface complexation is strong chemisorption and cost-effective spontaneous process (ΔG = −5.49 kJ mol−1~−2.16 kJ mol−1). The fact that UiO-66-(COOH)2 not only possesses a high adsorption capacity, but also enables selectivity to Sr2+ in the presence of similar radius ions Na+ and K+, prefigures its great potential for the practical treatment of radioactive Sr2+ in polluted water.  相似文献   

7.
The aim of this work was to investigate the influence of initial pH value (pH0) on the isothermal adsorption of Reactive Black 5 (RB5) dye on commercial powdered activated carbon. Four initial pH values were chosen for this experiment: pH0 = 2.00, 4.00, 8.00, and 10.00. In order to investigate the mechanism of adsorption kinetic, studies have been performed using pseudo-first-order and pseudo-second-order kinetic models as well as an intraparticle diffusion model. In addition, thermodynamic parameters of adsorption were determined for pH0 = 4.00. Results of this research showed that the initial pH value significantly influences the adsorption of RB5 dye onto activated carbon. The highest adsorption capacities (qe) and efficiencies of decolouration were observed for initial pH values of pH0 = 2.00 (qe = 246.0 mg g−1) and 10.00 (qe = 239.1 mg g−1) due to strong electrostatic interactions and attractive π···π interactions, respectively. It was also shown that the adsorption of RB5 dye on activated carbon at all initial pH values is kinetically controlled, assuming a pseudo-second-order model, and that intraparticle diffusion is not the only process that influences on the adsorption rate.  相似文献   

8.
Polyacrylonitrile (PAN)-based porous carbon was prepared by different methods of activation with PAN polymer microsphere as precursor. The morphology, structure and electrical properties for supercapacitor of the porous carbon were investigated. It was found that the morphology of PAN nanospheres tended to be destroyed in the process of one-step activation (activation and carbonization were carried out simultaneously, and could only be retained when the amount of activating agent KOH was small). While the spherical morphology could be well reserved during the two-step activation method (carbonization and activation sequentially). The specific surface area and pore volume increased first and then decreased, with the increase in activation holding time for both one-step and two-step activation methods. The specific surface area reached the maximum value with 2430 m2 g−1 for the one-step activation method and 2830 m2 g−1 for the two-step activation method. Additionally, their mass-specific capacitances were 178.8 F g−1 and 160.2 F g−1, respectively, under the current density of 1 A g−1. After 2000 cycles, the specific capacitance retentions were 92.9% and 91.3%.  相似文献   

9.
The presence of carcinogenic bromate (BrO3) in drinking water became a global concern and efforts towards its removal mainly focused on addressing the source. Herein, we rationally designed a porphyrin-based covalent organic framework (PV-COF) with a cationic surface to provide electrostatic interactions and a porphyrin core to induce hydrogen bonding interactions for the efficient removal of BrO3 from water. Through H-bonding and electrostatic interactions, PV-COF exhibited an exceptional bromate removal efficiency (maximum adsorption capacity, Qmax: 203.8 mg g−1) with the fastest uptake rate (kads) of 191.45 g mg−1 min−1. The bromate concentration was reduced to far below the allowed concentration in drinking water (10 ppb) within 20 minutes. We studied the relationship between bromate adsorption and COF surface modification by metalation of the porphyrinic core or neutralization of the viologen linkers by chemical reduction. The bromate adsorption mechanism was studied by EDAX mapping and molecular simulations, and it was found that ion exchange and hydrogen bonding formation drive the adsorption. Importantly, PV-COF could be easily recycled several times without compromising its adsorption efficiency.

A cationic COF removes carcinogenic bromate with a remarkable rate constant of 191.45 g mg−1 min−1.  相似文献   

10.
In the present work, the capability of the volcanic tuff from Macicasu (Romania) to remove ammonia (NH3) from air with different contamination levels during 24 h of adsorption experiments was investigated. The natural zeolitic volcanic tuff was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) method, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). The adsorption capacities varied between 0.022 mg NH3 g−1 zeolite and 0.282 mg NH3 g−1 zeolite, depending on the NH3 concentrations in the air and at the contact time. The nonlinear forms of the Langmuir and Freundlich isotherm models were used to fit the experimental data. Additionally, the adsorption of NH3 was studied using nonlinear pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich kinetic model. Based on the total volume of pores of used volcanic tuff, the NH3 was removed from the air both due to the physical adsorption of NH3 gas and the ion exchange of NH4+ (resulted from a reaction between NH3 and H2O adsorbed by the zeolite). Depending on the initial NH3 concentration and the amount of volcanic tuff, the NH3 concentrations can be reduced below the threshold of this contaminant in the air. The adsorption capacity of NH3 per unit of zeolite (1 g) varied in the range of 0.022–0.282 mg NH3 g−1 depending on the NH3 concentration in the air.  相似文献   

11.
We report in this article the structural properties, spectral behavior and heterogeneity of ZnCl2-ethanol (EtOH) mixtures in a wide-composition range (1:3 to 1:14 in molar ratios), using ATR-FTIR spectroscopy and quantum chemical calculations. To improve the resolution of the initial IR spectra, excess spectroscopy and two-dimensional correlation spectroscopy were employed. The transformation process was suggested to be from EtOH trimer and EtOH tetramer to EtOH monomer, EtOH dimer and ZnCl2-3EtOH complex upon mixing. The theoretical findings showed that increasing the content of EtOH was accompanied with the flow of negative charge to ZnCl2. This led to reinforcement of the Zn←O coordination bonds, increase of the ionic character of Zn‒Cl bond and weakening and even dissociation of the Zn‒Cl bond. It was found that in some of the ZnCl2-EtOH complexes optimized at the gas phase or under the solvent effect, there existed hydroxyls with a very special interactive array in the form of Cl‒Zn+←O‒HCl, which incredibly red-shifted to wavenumbers <3000 cm−1. This in-depth study shows the physical insights of the respective electrolyte alcoholic solutions, particularly the solvation process of the salt, help to rationalize the reported experimental results, and may shed light on understanding the properties of the deep eutectic solvents formed from ZnCl2 and an alcohol.  相似文献   

12.
Ti3C2Tx MXene has attracted considerable interest as a new emerging two-dimensional material for environmental remediation due to its high adsorption capacity. However, its use is greatly limited by its poor mechanical properties, low processability and recyclability, and the low dispersity of such powder materials. In this work, a porous adsorbent (C–CMP) containing cellulose nanocrystals (CNC), Ti3C2Tx MXene and polyvinyl alcohol (PVA) was prepared by a simple and environmentally-friendly foaming method. Glutaraldehyde was used as crosslinker to improve the mechanical properties and boost the adsorption efficiency of methylene blue (MB) molecules. Fourier transform infrared (FT–IR), elemental analysis (EDX) and thermogravimetric analysis (TGA) further confirmed that the preparation of the C–CMP foam and cross-linking reaction were successful. Scanning electron microscope (SEM) indicated that the macropores were distributed homogeneously. The adsorption experiment showed that maximum adsorption capacity of MB can reach 239.92 mg·g−1 which was much higher than anionic dye (methyl orange, 45.25 mg·g−1). The adsorption behavior fitted well with the Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. Based on FT–IR, EDX and X-ray photoelectron spectroscopy (XPS) analysis, the adsorption mechanism between C–CMP and MB molecules was attributed to electrostatic interaction.  相似文献   

13.
Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g−1) was found in the whole apple samples of the ‘Spartan’ cultivar stored under variant VIII (O2—20%, CO2—3%, N2—77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g−1) was determined in the apple peel samples of the ‘Auksis’ cultivar stored under variant II (O2—5%, CO2—1%, N2—94%) conditions. In the apple peel samples of the ‘Auksis’ cultivar stored under variant I (O2—21%, CO2—0.03%, N2—78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples.  相似文献   

14.
Activated carbons (ACs) for electric double layer capacitors (EDLCs) were fabricated from waste tea leaves, activated with the pore-forming substances ZnCl2 then, carbonized at high-temperature in N2 atmosphere. The surface texture and porosity of the ACs were determined using transmission electron micros-copy and N2 adsorption/desorption studies. The surface area of the 20 wt % ZnCl2 treated sample was found to be 1029 m2g?1 and had a distribution of micropores and mesopores. The electrochemical properties of the ACs were evaluated by using cyclic voltammetry and galvanostatic charge-discharge studies. ACs from waste tea leaves exhibited excellent specific capacitance as high as 196 F g?1 in the 0.1 M Na2SO4 neutral electrolyte, with rectangular-like cyclic voltammetry curves at a cell potential of 1.5 V and good cyclability with a capacitance retention of 95% at a high current density of 100 mA g?1 for 2000 cycles. The results show that the pore texture properties and specific surface area of ACs are dominated by changing carbonization temperature and the amount of activating agent ZnCl2. The electrochemical performance is influenced mainly by surface area, but the pore size distribution becomes a dominating factor for specific capacitance of a carbon electrode material when the pore structure is in range of micropores/mesopores.  相似文献   

15.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

16.
A molecularly imprinting polymer (MIP) was synthesized for Basic Blue 3 dye and applied to wastewater for the adsorption of a target template. The MIPs were synthesized by bulk polymerization using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA). Basic Blue 3 dye (BB-3), 2,2′-azobisisobutyronitrile (AIBN) and methanol were used as a functional monomer, cross linker, template, initiator and porogenic solvent, respectively, while non-imprinting polymers (NIP) were synthesized by the same procedure but without template molecules. The contact time was 25 min for the adsorption of BB-3 dye from 10 mL of spiked solution using 25 mg polymer. The adsorption of dye (BB-3) on the MIP followed the pseudo-second order kinetic (k2 = 0.0079 mg·g−1·min−1), and it was according to the Langmuir isotherm, with maximum adsorption capacities of 78.13, 85.4 and 99.0 mg·g−1 of the MIP at 283 K, 298 K and 313 K, respectively and 7 mg·g−1 for the NIP. The negative values of ΔG° indicate that the removal of dye by the molecularly imprinting polymer and non-imprinting polymer is spontaneous, and the positive values of ΔH° and ΔS° indicate that the process is endothermic and occurred with the increase of randomness. The selectivity of the MIP for BB-3 dye was investigated in the presence of structurally similar as well as different dyes, but the MIP showed higher selectivity than the NIP. The imprinted polymer showed 96% rebinding capacity at 313 K towards the template, and the calculated imprinted factor and Kd value were 10.73 and 2.62, respectively. In this work, the MIP showed a greater potential of selectivity for the template from wastewater relative to the closely similar compounds.  相似文献   

17.
The development of electrode materials for supercapacitors (SCs) is greatly desired, and this still poses an immense challenge for researchers. Cobalt silicate (Co2SiO4, denoted as CoSi) with a high theoretical capacity is deemed to be one of the sustainable electrode materials for SCs. However, its achieved electrochemical properties are still not satisfying. Herein, the phosphorus (P)-doped cobalt silicate, denoted as PCoSi, is synthesized by a calcining strategy. The PCoSi exhibits 1D nanobelts with a specific surface area of 46 m2∙g−1, and it can significantly improve the electrochemical properties of CoSi. As a supercapacitor’s (SC’s) electrode, the specific capacitance of PCoSi attains 434 F∙g−1 at 0.5 A∙g−1, which is much higher than the value of CoSi (244 F∙g−1 at 0.5 A∙g−1). The synergy between the composition and structure endows PCoSi with attractive electrochemical properties. This work provides a novel strategy to improve the electrochemical performances of transition metal silicates.  相似文献   

18.
We developed a new nanowire for enhancing the performance of lithium-sulfur batteries. In this study, we synthesized WO3 nanowires (WNWs) via a simple hydrothermal method. WNWs and one-dimensional materials are easily mixed with carbon nanotubes (CNTs) to form interlayers. The WNW interacts with lithium polysulfides through a thiosulfate mediator, retaining the lithium polysulfide near the cathode to increase the reaction kinetics. The lithium-sulfur cell achieves a very high initial discharge capacity of 1558 and 656 mAh g−1 at 0.1 and 3 C, respectively. Moreover, a cell with a high sulfur mass loading of 4.2 mg cm−2 still delivers a high capacity of 1136 mAh g−1 at a current density of 0.2 C and it showed a capacity of 939 mAh g−1 even after 100 cycles. The WNW/CNT interlayer maintains structural stability even after electrochemical testing. This excellent performance and structural stability are due to the chemical adsorption and catalytic effects of the thiosulfate mediator on WNW.  相似文献   

19.
To achieve rapid and highly efficient recovery of Li+ from seawater, a series of H2TiO3/cellulose aerogels (HTO/CA) with a porous network were prepared by a simple and effective method. The as-prepared HTO/CA were characterized and their Li+ adsorption performance was evaluated. The obtained results revealed that the maximum capacity of HTO/CA to adsorb Li+ was 28.58 ± 0.71 mg g−1. The dynamic k2 value indicated that the Li+ adsorption rate of HTO/CA was nearly five times that of HTO powder. Furthermore, the aerogel retained extremely high Li+ selectivity compared with Mg2+, Ca2+, K+, and Na+. After regeneration for five cycles, the HTO/CA retained a Li+ adsorption capacity of 22.95 mg g−1. Moreover, the HTO/CA showed an excellent adsorption efficiency of 69.93% ± 0.04% and high selectivity to Li+ in actual seawater. These findings confirm its potential as an adsorbent for recovering Li+ from seawater.  相似文献   

20.
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号