首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

2.
In this paper, bifurcation trees of period-3 motions to chaos in the periodically forced, hardening Duffing oscillator are investigated analytically. Analytical solutions for period-3 and period-6 motions are used for the bifurcation trees of period-3 motions to chaos. Such bifurcation trees are based on the Hopf bifurcations of asymmetric period-3 motions. In addition, an independent symmetric period-3 motion without imbedding in chaos is discovered, and such a symmetric period-3 motion possesses saddle-node bifurcations only. The switching of symmetric to asymmetric period-3 motions is completed through saddle-node bifurcations, and the onset of asymmetric period-6 motions occurs at the Hopf bifurcations of asymmetric period-3 motions. Continuously, the onset of period-12 motions is at the Hopf bifurcation of asymmetric period-6 motions. With such bifurcation trees, the chaotic motions relative to asymmetric period-3 motions can be determined analytically. This investigation provides a systematic way to study analytical dynamics of chaos relative to period-m motions in nonlinear dynamical systems.  相似文献   

3.
The nonlinear global forced dynamics of an axially moving viscoelastic beam, while both longitudinal and transverse displacements are taken into account, is examined employing a numerical technique. The equations of motion are derived using Newton′s second law of motion, resulting in two partial differential equations for the longitudinal and transverse motions. A two-parameter rheological Kelvin–Voigt energy dissipation mechanism is employed for the viscoelastic structural model, in which the material, not partial, time derivative is used in the viscoelastic constitutive relations; this gives additional terms due to the simultaneous presence of the material damping and the axial speed. The equations of motion for both longitudinal and transverse motions are then discretized via Galerkin’s method, in which the eigenfunctions for the transverse motion of a hinged-hinged linear stationary beam are chosen as the basis functions. The subsequent set of nonlinear ordinary equations is solved numerically by means of the direct time integration via modified Rosenbrock method, resulting in the bifurcation diagrams of Poincaré maps. The results are also presented in the form of time histories, phase-plane portraits, and fast Fourier transform (FFTs) for specific sets of parameters.  相似文献   

4.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

5.
冲击消振器的概周期碰振运动分析   总被引:5,自引:0,他引:5  
建立了冲击消振器对称周期运动的Poincar啨映射方程 ,讨论了对称周期运动的稳定性与局部分岔。通过数值仿真研究了冲击消振器在非共振、弱共振和强共振条件下的概周期碰振运动及其向混沌的转迁过程。  相似文献   

6.
Two vibrating bubbles submerged in a fluid influence each others’ dynamics via sound waves in the fluid. Due to finite sound speed, there is a delay between one bubble’s oscillation and the other’s. This scenario is treated in the context of coupled nonlinear oscillators with a delay coupling term. It has previously been shown that with sufficient time delay, a supercritical Hopf bifurcation may occur for motions in which the two bubbles are in phase. In this work, we further examine the bifurcation structure of the coupled microbubble equations, including analyzing the sequence of Hopf bifurcations that occur as the time delay increases, as well as the stability of this motion for initial conditions which lie off the in-phase manifold. We show that in fact the synchronized, oscillating state resulting from a supercritical Hopf is attracting for such general initial conditions.  相似文献   

7.
A set of nonlinear differential equations is established by using Kane‘s method for the planar oscillation of flexible beams undergoing a large linear motion. In the case of a simply supported slender beam under certain average acceleration of base, the second natural frequency of the beam may approximate the tripled first one so that the condition of 3 : 1 internal resonance of the beam holds true. The method of multiple scales is used to solve directly the nonlinear differential equations and to derive a set of nonlinear modulation equations for the principal parametric resonance of the first mode combined with 3 : 1 internal resonance between the first two modes. Then, the modulation equations are numerically solved to obtain the steady-state response and the stability condition of the beam. The abundant nonlinear dynamic behaviors, such as various types of local bifurcations and chaos that do not appear for linear models, can be observed in the case studies. For a Hopf bifurcation,the 4-dimensional modulation equations are reduced onto the central manifold and the type of Hopf bifurcation is determined. As usual, a limit cycle may undergo a series of period-doubling bifurcations and become a chaotic oscillation at last.  相似文献   

8.
Autoparametric interaction of a liquid free surface in a rectangular tank with an elastic support structure, which is subjected to vertical excitation, is investigated. When the natural frequency of the structure is equal to the lowest natural frequency of liquid sloshing, this system is categorized as an autoparametric system with an internal resonance ratio 1:1. The structure is elastically supported so there is a higher possibility that the 1:1 internal resonance can be observed. The nonlinear theoretical analysis is conducted for a fluid assumed to be perfect in a tank with a finite liquid depth. The equations of motion for the first three sloshing modes are derived employing Galerkin’s technique and considering both the nonlinearity of the fluid motion, and the viscous damping effect. Then the theoretical frequency response curves for the harmonic oscillations of the structure and sloshing are determined using van der Pol’s method. The frequency response curves show that high amplitudes of the structure’s vibrations facilitate the liquid sloshing. Furthermore, the influence of the internal detuning parameter is investigated by showing the frequency response curves and bifurcation sets. Hopf bifurcations may occur followed by amplitude-modulated motions. The theoretical results are in quantitative agreement with the experimental data.  相似文献   

9.
The non-linear interaction of the in-plane and out-of-plane motions of a suspended cable in the neighbourhood of 2:1 internal resonance under random loading is studied. The random loading acts externally on the in-plane mode, while the out-of-plane mode is non-linearly coupled with the in-plane mode. Any non-trivial motion of the out-of-plane mode is mainly due to this non-linear coupling, which becomes significant in the neighbourhood of internal resonance. The response statistics are estimated by employing the Fokker-Planck equation together with Gaussian and non-Gaussian closures. Monte-Carlo simulation is also used for numerical verification. Away from the internal resonance condition, the response is governed by the inplane motion, and the non-Gaussian closure solution is found to be in good agreement with numerical simulation results. The stochastic bifurcation of the out-of-plane mode is predicted by Gaussian and non-Gaussian closures, and by Monte-Carlo simulation. The non-Gaussian closure can only predict bounded solutions within a limited region. The on-off intermittency of the second mode is observed in the Monte-Carlo simulation over a small range of excitation level. The influence on response statistics of excitation level and cable parameters, such as internal detuning, damping ratios, and sag-to-span ratio, is reported.  相似文献   

10.
The trivial equilibrium of a two-degree-of-freedom autonomous system may become unstable via a Hopf bifurcation of multiplicity two and give rise to oscillatory bifurcating solutions, due to presence of a time delay in the linear and nonlinear terms. The effect of external excitations on the dynamic behaviour of the corresponding non-autonomous system, after the Hopf bifurcation, is investigated based on the behaviour of solutions to the four-dimensional system of ordinary differential equations. The interaction between the Hopf bifurcating solutions and the high level excitations may induce a non-resonant or secondary resonance response, depending on the ratio of the frequency of bifurcating periodic motion to the frequency of external excitation. The first-order approximate periodic solutions for the non-resonant and super-harmonic resonance response are found to be in good agreement with those obtained by direct numerical integration of the delay differential equation. It is found that the non-resonant response may be either periodic or quasi-periodic. It is shown that the super-harmonic resonance response may exhibit periodic and quasi-periodic motions as well as a co-existence of two or three stable motions.  相似文献   

11.
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1999,20(2):131-158
The nonlinear planar response of a hinged-clamped beam to a principal parametric resonance of either its first or second mode or a combination parametric resonance of the additive type of its first two modes is investigated. The analysis accounts for mid-plane stretching, a static axial load, a restraining spring at one end, and modal damping. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of static axial loads, resulting in a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear integral-partial-differential equation and associated boundary conditions and derive three sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the cases of (a) principal parametric resonance of either the first or the second mode, and (b) a combination parametric resonance of the additive type of these modes. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of principal parametric resonance of the first mode or combination parametric resonance of the additive type, trivial and two-mode solutions are possible, whereas for the case of parametric resonance of the second mode, trivial, single, and two-mode solutions are possible. The trivial and two-mode equilibrium solutions of the modulation equations may undergo either a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. For some excitation parameters, we found complex responses including period-doubling bifurcations and blue-sky catastrophes.  相似文献   

12.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

13.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

14.
The plates interacting with inviscid, incompressible, potential gas flow are analyzed. Many modes interaction is considered to describe self-sustained vibrations of plates. The singular integral equation is solved to obtain gas pressures acting on the plate. The Von Karman equations with respect to three displacements are used to describe the plate geometrical non-linear vibrations. The Galerkin method is applied to each partial differential equation to obtain the finite-degree-of-freedom model of the plate vibrations. Self-sustained vibrations, which take place due to the Hopf bifurcation, are investigated. These vibrations undergo the Naimark?CSacker bifurcation and the periodic motions are transformed into the almost periodic ones. If the stream velocity is increased, almost periodic motions are transformed into chaotic ones. As a result of the internal resonance, the saturation of the vibration mode is observed. The non-linear dynamics of low- and high-aspect-ratio plates is analyzed.  相似文献   

15.
Three-to-One Internal Resonances in Hinged-Clamped Beams   总被引:7,自引:0,他引:7  
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1997,12(2):129-154
The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.  相似文献   

16.
I.IntroductionAlthoughalotofpapersaboutthedynamicalstudyofshallowarchunderperiodicforcehavebeenpresentedl"ZI,theseresultshavebeenobtainedunderthehypothesisofonemode.Whenthearchhasinitialstaticdeflection,thevibrationfrequenciesof'thefirstorderandthesecondordermodeswillbeinresonance.Atthistimethehypothesisofonemodecannotmeetthenecessityofthedynamicalstudyoftheshallowarch.Thetwomodesofthesystem'willreacttoeachotherandtheenergycanbetransferredbetweenthevariousmodes.Inordertoanalysetheruleofthemo…  相似文献   

17.
内共振条件下直线运动梁的动力稳定性   总被引:31,自引:4,他引:31  
冯志华  胡海岩 《力学学报》2002,34(3):389-400
基于Kane方程,建立起了包含有耦合的三次几何及惯性非线性项大范围直线运动梁动力学控制方程.利用多尺度法并结合笛卡尔坐标变换,对所得方程进行一次近似展开,着重对满足一、二阶模态间3:1内共振现象的两端铰支梁参激振动平凡解稳定性进行了详尽的分析,得出了稳定性边界的解析表达式.采用中心流形定理对调制微分方程组进行降维处理,分析了相应Hopf分岔类型并通过数值计算发现了稳定的极限环存在.  相似文献   

18.
武世江  张继业  隋皓  殷中慧  胥奇 《力学学报》2021,53(9):2569-2581
针对轮对系统中的非线性动力学问题, 本文基于Hopf分岔代数判据得到考虑陀螺效应的轮对系统Hopf分岔点解析表达式, 即轮对系统蛇形失稳的线性临界速度解析表达式. 基于分岔理论得到轮对系统的第一、第二Lyapunov系数表达式, 并结合打靶法分别得到不同纵向刚度下, 考虑陀螺效应与不考虑陀螺效应的轮对系统分岔图. 通过对比有无陀螺效应的轮对系统分岔图发现, 在同一纵向刚度下, 考虑陀螺效应的轮对系统线性临界速度和非线性临界速度均大于不考虑陀螺效应的轮对系统, 即陀螺效应可以提高轮对系统的运动稳定性. 基于Bautin分岔理论, 以纵向刚度和纵向速度作为参数, 分别得到考虑陀螺效应和不考虑陀螺效应的轮对系统, 从亚临界Hopf分岔到超临界Hopf分岔, 再从超临界Hopf分岔到亚临界Hopf分岔的迁移机理拓扑图. 通过对比有、无陀螺效应的轮对系统Bautin分岔拓扑图发现, 陀螺效应将改变轮对系统的退化Hopf分岔点, 但对于轮对系统Bautin分岔拓扑图的影响不大.   相似文献   

19.
The thermo-mechanical nonlinear dynamics of a buckled axially moving beam is numerically investigated, with special consideration to the case with a three-to-one internal resonance between the first two modes. The equation of motion of the system traveling at a constant axial speed is obtained using Hamilton??s principle. A closed form solution is developed for the post-buckling configuration for the system with an axial speed beyond the first instability. The equation of motion over the buckled state is obtained for the forced system. The equation is reduced into a set of nonlinear ordinary differential equations via the Galerkin method. This set is solved using the pseudo-arclength continuation technique to examine the frequency response curves and direct-time integration to construct bifurcation diagrams of Poincaré maps. The vibration characteristics of the system at points of interest in the parameter space are presented in the form of time histories, phase-plane portraits, and Poincaré sections.  相似文献   

20.
Non-linear interactions in a hinged-hinged uniform moderately curved beam with a torsional spring at one end are investigated. The two-mode interaction is a one-to-one autoparametric resonance activated in the vicinity of veering of the frequencies of the lowest two modes and results from the non-linear stretching of the beam centerline. The excitation is a base acceleration that is involved in a primary resonance with either the first mode only or with both modes. The ensuing non-linear responses and their stability are studied by computing force- and frequency-response curves via bifurcation analysis tools. Both the sensitivity of the internal resonance detuning—the gap between the veering frequencies—and the linear modal structure are investigated by varying the rise of the beam half-sinusoidal rest configuration and the torsional spring constant. The internal and external resonance detunings are varied accordingly to construct the non-linear system response curves. The beam mixed-mode response is shown to undergo several bifurcations, including Hopf and homoclinic bifurcations, along with the phenomenon of frequency island generation and mode localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号