首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DOUBLEHIGHORDERS-BREAKINGBIFURCATIONPOINTSANDTHEIRNUMERICALDETERMINATION¥(杨忠华,叶瑞松)YangZhonghua;(DepartmentofMathematics,Shangh...  相似文献   

2.
We present a collection of experimental results on the influence of modal interactions (i.e., internal or autoparametric resonances) on the nonlinear response of flexible metallic and composite structures subjected to a range of resonant excitations. The experimental results are provided in the form of frequency spectra, Poincaré sections, pseudo-phase planes, dimension calculations, and response curves. Experimental observations of transitions from periodic to chaotically modulated motions are also presented. We also discuss relevant analytical results. The current study is also relevant to other internally resonant structural systems.  相似文献   

3.
Yonghong  Chen  Jianxue  Xu  Tong  Fang 《Nonlinear dynamics》2001,24(3):231-243
The complex dynamical behaviors of neural networks may deducenew information processing methodology. In this paper, the dynamics of anormal form network with Z 2 symmetry is studied. Thesecondary Hopf bifurcation of the network is discussed and a two-torusis observed. Examining the phase-locking motions of the two-torus, wepresent the regularity of symmetry-breaking occurring in the system. Ifthe ratio of the two frequencies of the codimension-two Hopf bifurcationis represented by an irreducible fraction, symmetry-breaking occurs wheneither the numerator or the denominator of the fraction is even. Chaoticattractors may be created with sigmoid nonlinearities added to theright-hand side of the normal form equations. The trajectory andsecond-order Poincaré maps of the chaotic attractor are given.The chaotic attractor looks like a butterfly on some of the second-orderPoincaré maps. This is a marvelous example for chaos mimickingnature.  相似文献   

4.
An experimental study of local and global bifurcations in a driven two-well magneto-mechanical oscillator is presented. A detailed picture of the local bifurcation structure of the system is obtained using an automated bifurcation data acquisition system. Basins of attractions for the system are obtained using a new experimental technique: an ensemble of initial conditions is generated by switching between stochastic and deterministic excitation. Using this stochastic interrogation method, we observe the evolution of basins of attraction in the nonlinear oscillator as the forcing amplitude is increased, and find evidence for homoclinic bifurcation before the onset of chaos. Since the entire transient is collected for each initial condition, the same data can be used to obtain pictures of the flow of points in phase space. Using Liouville's Theorem, we obtain damping estimates by calculating the contraction of volumes under the action of the Poincaré map, and show that they are in good agreement with the results of more conventional damping estimation methods. Finally, the stochastic interrogation data is used to estimate transition probability matrices for finite partitions of the Poincaré section. Using these matrices, the evolution of probability densities can be studied.  相似文献   

5.
In this paper, the dynamics of a cantilevered articulated system of rigid cylinders interconnected by rotational springs, within a pipe containing fluid flow is studied. Although the formulation is generalized to any number of degrees-of-freedom (articulations), the present work is restricted to three-degree-of-freedom systems. The motions are considered to be planar, and the equations of motion, apart from impacting terms, are linearized. Impacting of the articulated cylinder system on the outer pipe is modelled by either a cubic spring (for analytical convenience) or, more realistically, by a trilinear spring model. The critical flow velocities, for which the system loses stability, by flutter (Hopf bifurcation) or divergence (pitchfork bifurcation) are determined by an eigenvalue analysis. Beyond these first bifurcations, it is shown that, for different values of the system parameters, chaos is obtained through three different routes as the flow is incremented: a period-doubling cascade, the quasiperiodic route, and type III intermittency. The dynamical behaviour of the system and differing routes to chaos are illustrated by phase-plane portraits, bifurcation diagrams, power spectra, Poincaré sections, and Lyapunov exponent calculations.  相似文献   

6.
A study is made of the dynamics of oscillating systems with a slowly varying parameter. A slowly varying forcing periodically crosses a critical value corresponding to a pitchfork bifurcation. The instantaneous phase portrait exhibits a centre when the forcing does not exceed the critical value, and a saddle and two centres with an associated double homoclinic loop separatrix beyond this value. The aim of this study is to construct a Poincaré map in order to describe the dynamics of the system as it repeatedly crosses the bifurcation point. For that purpose averaging methods and asymptotic matching techniques connecting local solutions are applied. Given the initial state and the values of the parameters the properties of the Poincaré map can be studied. Both sensitive dependence on initial conditions and (quasi) periodicity are observed. Moreover, Lyapunov exponents are computed. The asymptotic expressions for the Poincaré map are compared with numerical solutions of the full system that includes small damping.  相似文献   

7.
An experimental study of a system that is parametrically excited through a bifurcation parameter is presented. The system consits of a lightly-damped, flexible beam which is buckled and unbuckled magnetically: it is parametrically excited by driving an electromagnet with a low-frequency sine wave. For voltage amplitudes in excess of the static bifurcation value, the beam slowly switches between the one-and two-well configurations. Experimental static and dynamic bifurcation results are presented. Static bifurcatons for the system are shown to involve a butterfly catastrophe. The dynamic bifurcation diagram, obtained with an automated data acquisition system, shows several period-doubling sequences, jump phenomena, and a chaotic region. Poincaré sections of a chaotic steady-state are obtained for various values of the driving phase, and the correlation dimension of the chaotic attractor is estimated over a large scaling region. Singular system analysis is used to demonstrate the effect of delay time on the noise level in delay-reconstructions, and to provide an independent check on the dimension estimate by directly estimating the number of independent coordinates from time series data. The correlation dimension is also estimated using the delay-reconstructed data and shown to be in good agrement with the value obtained from the Poincaré sections. The bifurcation and dimension results are used together with physical sonsiderations to derive the general form of a single-degree-of-freedom model for the experimental system.  相似文献   

8.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

9.
Summary The plastic deformation of the superionic conductors AgI, Li2SO4, and Li2SO4–K2SO4 mixtures rich in Li2SO4 has been investigated using stress relaxation. The observed activation volume is inversely proportional to the effective initial stress, but the proportionality constant is smaller than in normal non-superionic substances. This fact can be attributed to the weak steric hindrance for rotation of the lattice units, making the rotatorphases into an additional exception to the general empirical relation found by Kubát and coworkers.The existence of an order-disorder transition in AgI close to 700 K is confirmed by the stress relaxation data and also by measurements of maximum shear stress versus maximum shearing rate. It is found that such data may be conveniently represented by doubly logarithmic plots, in which a change in flow properties can be easily spotted.With 13 figures and 7 tables  相似文献   

10.
In this paper, bifurcation trees of period-3 motions to chaos in the periodically forced, hardening Duffing oscillator are investigated analytically. Analytical solutions for period-3 and period-6 motions are used for the bifurcation trees of period-3 motions to chaos. Such bifurcation trees are based on the Hopf bifurcations of asymmetric period-3 motions. In addition, an independent symmetric period-3 motion without imbedding in chaos is discovered, and such a symmetric period-3 motion possesses saddle-node bifurcations only. The switching of symmetric to asymmetric period-3 motions is completed through saddle-node bifurcations, and the onset of asymmetric period-6 motions occurs at the Hopf bifurcations of asymmetric period-3 motions. Continuously, the onset of period-12 motions is at the Hopf bifurcation of asymmetric period-6 motions. With such bifurcation trees, the chaotic motions relative to asymmetric period-3 motions can be determined analytically. This investigation provides a systematic way to study analytical dynamics of chaos relative to period-m motions in nonlinear dynamical systems.  相似文献   

11.
Abstract

In this article, the nonlinear dynamic analysis of a flexible-link manipulator is presented. Especially, the possibility of chaos occurrence in the system dynamic model is investigated. Upon the occurrence of chaos, the system dynamical behavior becomes unpredictable which in turn brings about uncertainty and irregularity in the system motion. The importance of this investigation is pronounced in similar systems such as double pendulum and single-link flexible manipulator. What makes this study distinct from previous ones is the increase in the number of links as well as the changing the bifurcation parameters from system mechanical parameters to force and torque inputs. To this aim, the motion equations of the N-link robot, which are derived with the aid of the recursive Gibbs-Appell formulation and the assumed modes method, are used. In the end, the equations of motion are developed for a two-link flexible manipulator, and its nonlinear dynamical behavior is analyzed via numerical integration of discrete equations. The results are presented in the form of bifurcation diagrams (for variation of torque amplitude), time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms. The outcomes indicate that when there is no offset, the decrease in damping results in chaotic generalized modal coordinates. In addition, as the excitation frequency decreases from 2π to π, a limiting amplitude is created at 0.35 before which the behavior of generalized rigid and modal coordinates is different, while this behavior has more similarity after this point. An experimental setup is also used to check the torques as the system input.  相似文献   

12.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

13.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

14.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

15.
Sado  D.  Gajos  K. 《Meccanica》2003,38(6):719-729
The nonlinear response of a three degree of freedom vibratory system with double pendulum in the neighbourhood internal and external resonances is investigated. The equations of motion have bean solved numerically. In this type system one mode of vibration may excite or damp another one, and for except different kinds of periodic vibration there may also appear chaotic vibration. To prove the character of this vibration and to realise the analysis of transitions from periodic regular motion to quasi-periodic and chaotic, the following have been constructed: bifurcation diagrams and time histories, phase plane portraits, power spectral densities, Poincaré maps and exponents of Lyapunov. These bifurcation diagrams show many sudden qualitative changes, that is, many bifurcations in the chaotic attractor as well as in the periodic orbits.  相似文献   

16.
The basic concepts, normal forms and universal unfoldings of Zn-equivariant singularity are investigated in the present paper. As an example, the normal forms and universal unfoldings of Zs-singularity are formulated. As a matter of fact, the theory provides a useful tool to study the subharmonic resonance bifurcation of the periodic parameter-excited system. Project supported by the National Natural Science Foundation of China  相似文献   

17.
The paper discusses challenges in numerical analysis and numerical/analytical results for strongly non-linear systems—systems with “signum”-type non-linearities. Such non-linearities are implemented for instantaneous variations of the systems’ parameters, to reduce their mean energy response when subjected to random excitations. Numerical results for displacement and velocity response probability density functions (PDFs), energy response PDFs and various order moments are obtained by the path integration technique. Attention is also given to evaluation of mean upcrossing rate, related to the system's half period, via Rice's formula informally applied to discontinuous response PDFs.  相似文献   

18.
用市售微米MoS2(micro-MoS2)、自制MoS2纳米球(MoS2 nano-balls)与MoS2夹层化合物(MoS2-IC)分别共混填充到聚甲醛(POM)中,然后把此共混物复合到铜粉钢板上,制备出系列改性POM/铜/钢3层复合轴承材料.在UST万能表面测试仪上对复合材料的微观摩擦学性能进行了测试.结果显示POM/MoS2-IC复合材料的微观摩擦学性能并不理想,分析原因认为在MoS2夹层过程中,MoS2的晶型由摩擦学性能优良的2H型转变成了相对较差的1T型.POM/MoS2 nano-balls复合材料表现出了优良的微观摩擦学性能,这归咎于其独特的球形封闭结构引起的化学稳定性升高,此外在摩擦过程中球形结构可以通过剥层与转移起到润滑作用.  相似文献   

19.
Codimension two bifurcation of a vibro-bounce system   总被引:1,自引:0,他引:1  
A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.The project supported by the National Natural Science Foundation of China (10172042, 50475109) and the Natural Science Foundation of Gansu Province Government of China (ZS-031-A25-007-Z (key item))  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号