首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

2.
Rate constants for the gas phase reactions of OH(?) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(?) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.  相似文献   

3.
The rate constant for the reaction of OH radicals with molecular hydrogen was measured using the flash photolysis resonance-fluorescence technique over the temperature range of 200-479 K. The Arrhenius plot was found to exhibit a noticeable curvature. Careful examination of all possible systematic uncertainties indicates that this curvature is not due to experimental artifacts. The rate constant can be represented by the following expressions over the indicated temperature intervals: k(H2)(250-479 K) = 4.27 x 10(-13) x (T/298)2.406 x exp[-1240/T] cm3 molecule(-1) (s-1) above T = 250 K and k(H2)(200-250 K) = 9.01 x 10(-13) x exp[-(1526 +/- 70)/T] cm3 molecule(-1) s(-1) below T = 250 K. No single Arrhenius expression can adequately represent the rate constant over the entire temperature range within the experimental uncertainties of the measurements. The overall uncertainty factor was estimated to be f(H2)(T) = 1.04 x exp[50 x /(1/T) - (1/298)/]. These measurements indicate an underestimation of the rate constant at lower atmospheric temperatures by the present recommendations. The global atmospheric lifetime of H2 due to its reaction with OH was estimated to be 10 years.  相似文献   

4.
A high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer was used to investigate the minor channel (1b) producing nitric acid, HNO3, in the HO2 + NO reaction for which only one channel (1a) is known so far: HO2 + NO --> OH + NO2 (1a), HO2 + NO --> HNO3 (1b). The reaction has been investigated in the temperature range 223-298 K at a pressure of 200 Torr of N2 carrier gas. The influence of water vapor has been studied at 298 K. The branching ratio, k1b/k1a, was found to increase from (0.18(+0.04/-0.06))% at 298 K to (0.87(+0.05/-0.08))% at 223 K, corresponding to k1b = (1.6 +/- 0.5) x 10(-14) and (10.4 +/- 1.7) x 10(-14) cm3 molecule(-1) s(-1), respectively at 298 and 223 K. The data could be fitted by the Arrhenius expression k1b = 6.4 x 10(-17) exp((1644 +/- 76)/T) cm3 molecule(-1) s(-1) at T = 223-298 K. The yield of HNO3 was found to increase in the presence of water vapor (by 90% at about 3 Torr of H2O). Implications of the obtained results for atmospheric radicals chemistry and chemical amplifiers used to measure peroxy radicals are discussed. The results show in particular that reaction 1b can be a significant loss process for the HO(x) (OH, HO2) radicals in the upper troposphere.  相似文献   

5.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure k(Cl+C(x)F(2x+1)CH(OH)(2)) (x = 1, 3, 4) = (5.84 +/- 0.92) x 10(-13) and k(OH+C(x)F(2x+1)CH(OH)(2)) = (1.22 +/- 0.26) x 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air at 296 +/- 2 K. The Cl initiated oxidation of CF(3)CH(OH)(2) in 700 Torr of air gave CF(3)COOH in a molar yield of 101 +/- 6%. IR spectra of C(x)F(2x+1)CH(OH)(2) (x = 1, 3, 4) were recorded and are presented. An upper limit of k(CF(3)CHO+H(2)O) < 2 x 10(-23) cm(3) molecule(-1) s(-1) was established for the gas-phase hydration of CF(3)CHO. Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source of perfluorinated carboxylic acids in the environment.  相似文献   

6.
The reactions of ground-state imidogen radicals (NH(X 3sigma-)) with NO and select saturated and unsaturated hydrocarbons have been measured in a pulsed supersonic expansion Laval nozzle flow reactor in the temperature range 53-188 K. The rate coefficients for the NH + NO system display negative temperature dependence in the temperature regime currently investigated and a global temperature-dependent fit is best represented in a modified power law functional form, with k1(NH + NO) = (4.11 +/- 0.31) x 10(-11) x (T/300)(-0.30+/-0.17) x exp(77+/-21/T) cm3/s. The reactions of NH with ethylene, acetylene, propene, and diacetylene were measured over the temperature range 53-135 K. In addition, the reactions of NH with methane and ethane were also measured at 53 K, for reasons discussed later. The temperature dependence of the reactions of NH with the unsaturated hydrocarbons are fit using power law expressions, k(T) = A(T/300)(-n), and are as follows: k4 = (2.3 +/- 1.2) x 10(-12) x (T/300)(-1.09+/-0.33) cm3/s, k5 = (4.5 +/- 0.3) x 10(-12) x (T/300)(-1.07+/-0.04) cm3/s, k6 = (5.6 +/- 1.9) x 10(-12) x (T/300)(-1.23+/-0.21) cm3/s, and k7 = (7.4 +/- 1.8) x 10(-12) x (T/300)(-1.23+/-0.15) cm3/s for ethylene, acetylene, propene, and diacetylene, respectively. The rate for NH + ethane at 53 K is measured to be k3 = (6.8 +/- 1.7) x 10(-12) cm3/s, while that for methane at the same temperature represents an upper bound of k2 < or = (1.1 +/- 4.3) x 10(-12) cm3/s, as this is at the limits of measurement with our current technique. The behavior of these systems throughout the temperature range explored indicates that these reactions occur over a potential energy surface without an appreciable barrier through a complex formation mechanism. Implications for chemistry in low temperature environments where these species are found are briefly discussed.  相似文献   

7.
A newly constructed chamber/Fourier transform infrared system was used to determine the relative rate coefficient, k(i), for the gas-phase reaction of Cl atoms with 2-butanol (k(1)), 2-methyl-2-butanol (k(2)), 3-methyl-2-butanol (k(3)), 2,3-dimethyl-2-butanol (k(4)) and 2-pentanol (k(5)). Experiments were performed at (298 +/- 2) K, in 740 Torr total pressure of synthetic air, and the measured rate coefficients were, in cm(3) molecule(-1) s(-1) units (+/-2sigma): k(1)=(1.32 +/- 0.14) x 10(-10), k(2)=(7.0 +/- 2.2) x 10(-11), k(3)=(1.17 +/- 0.14) x 10(-10), k(4)=(1.03 +/- 0.17) x 10(-10) and k(5)=(2.18 +/- 0.36) x 10(-10), respectively. Also, all the above rate coefficients (except for 2-pentanol) were investigated as a function of temperature (267-384 K) by pulsed laser photolysis-resonance fluorescence (PLP-RF). The obtained kinetic data were used to derive the Arrhenius expressions: k(1)(T)=(6.16 +/- 0.58) x 10(-11)exp[(174 +/- 58)/T], k(2)(T)=(2.48 +/- 0.17) x 10(-11)exp[(328 +/- 42)/T], k(3)(T)=(6.29 +/- 0.57) x 10(-11)exp[(192 +/- 56)/T], and k(4)(T)=(4.80 +/- 0.43) x 10(-11)exp[(221 +/- 56)/T](in units of cm(3) molecule(-1) s(-1) and +/-sigma). Results and mechanism are discussed and compared with the reported reactivity with OH radicals. Some atmospheric implications derived from this study are also reported.  相似文献   

8.
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.  相似文献   

9.
A laser flash photolysis-resonance fluorescence technique has been employed to determine absolute rate coefficients for the CH3F + Cl reaction in N2 bath gas in the temperature range of 200-700 K and pressure range of 33-133 hPa. The data were fitted to a modified Arrhenius expression k(T) = 1.14 x 10(-12) x (T/298)2.26 exp{-313/T}. The OH and Cl reaction rates of (13)CH3F and CD3F have been measured by long-path FTIR spectroscopy relative to CH3F at 298 +/- 2 K and 1013 +/- 10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least-squares spectral fitting method including line data from the HITRAN database and measured infrared spectra as references. The relative reaction rates defined by alpha = k(light)/k(heavy) were determined to be k(OH+CH3F)/k(OH+CD3F) = 4.067 +/- 0.018, k(OH+CH3F)/k(OH+(13)CH3F) = 1.067 +/- 0.006, k(Cl+CH3F)/k(Cl+CD3F) = 5.11 +/- 0.07, and k(Cl+CH3F)/k(Cl+(13)CH3F) = 1.016 +/- 0.006. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3F have been further investigated by quantum chemistry methods and variational transition state theory.  相似文献   

10.
Rate constants for the gas phase reactions of OH radicals with 2-propanol and three fluorine substituted 2-propanols, (CH(3))(2)CHOH (k(0)), (CF(3))(2)CHOH (k(1)), (CF(3))(2)C(OH)CH(3) (k(2)), and (CF(3))(3)COH (k(3)), were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions: k(0)(T) = 1.46 × 10(-11) exp{-883/T} + 1.30 × 10(-12) exp{+371/T} cm(3) molecule(-1) s(-1); k(1)(T) = 1.19 × 10(-12) exp{-1207/T} + 7.85 × 10(-16) exp{+502/T } cm(3) molecule(-1) s(-1); k(2)(T) = 1.68 × 10(-12) exp{-1718/T} + 7.32 × 10(-16) exp{+371/T} cm(3) molecule(-1) s(-1); k(3)(T) = 3.0 × 10(-20) × (T/298)(11.3) exp{+3060/T} cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 2.4 days and 1.9, 6.3, and 46 years, respectively. UV absorption cross sections were measured between 160 and 200 nm. The IR absorption cross sections of the three fluorinated compounds were measured between 450 and 1900 cm(-1), and their global warming potentials were estimated.  相似文献   

11.
The kinetics of the OH + HCNO reaction was studied. The total rate constant was measured by LIF detection of OH using two different OH precursors, both of which gave identical results. We obtain k = (2.69 +/- 0.41) x 10(-12) exp[(750.2 +/- 49.8)/T] cm(3) molecule(-1) s(-1) over the temperature range 298-386 K, with a value of k = (3.39 +/- 0.3) x 10(-11) cm(3) molecule(-1) s(-1) at 296 K. CO, H(2)CO, NO, and HNO products were detected using infrared laser absorption spectroscopy. On the basis of these measurements, we conclude that CO + H(2)NO and HNO + HCO are the major product channels, with a minor contribution from H(2)CO + NO.  相似文献   

12.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

13.
14.
Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.0) x 10(-12) exp [(836 +/- 54)/T]; k2 = (6.9 +/- 0.9) x 10(-12) exp [(744 +/- 40)/T]; k3 = (10 +/- 1) x 10(-12) exp [(652 +/- 27)/T]; and k4 = (4.0 +/- 0.4) x 10(-12) exp [(783 +/- 32)/T]. At 298 K, the rate coefficients obtained by the two methods for each of the alcohols studied were in good agreement. The results are presented and compared with those obtained previously for the same and related reactions of OH radicals. Reactivity factors for substituent groups containing the hydroxyl group are determined. The atmospheric implications for the studied alcohols are considered briefly.  相似文献   

15.
The kinetics of the OH radical and Cl atom reactions with nine fluorinated ethers have been studied by the relative rate method at 298 K and 1013 hPa using gas chromatography-mass spectroscopy (GC-MS) detection: k(OH + CH3CH2OCF3) = (1.55 +/- 0.25) x 10(-13), k(OH + CF3CH2OCH3) = (5.7 +/- 0.8) x 10(-13),k(OH + CF3CH2OCHF2) = (9.1 +/- 1.1) x 10(-15), k(OH + CF3CHFOCHF2) = (6.5 +/- 0.8) x 10(-15), k(OH + CHF2CHFOCF3) = (6.8 +/- 1.1) x 10(-15), k(OH + CF3CHFOCF3) < 1 x 10(-15), k(OH + CF3CHFCF2OCHF2) = (1.69 +/- 0.26) x 10(-14), k(OH + CF3CHFCF2OCH2CH3) = (1.47 +/- 0.13) x 10(-13), k(OH + CF3CF2CF2OCHFCF3) < 1 x 10(-15), k(Cl + CH3CH2OCF3) = (2.2 +/- 0.8) x 10(-12), k(Cl + CF3CH2OCH3) = (1.8 +/- 0.9) x 10(-11), k(Cl + CF3CH2OCHF2) = (1.5 +/- 0.4) x 10(-14), k(Cl + CF3CHFOCHF2) = (1.1 +/- 1.9) x 10(-15), k(Cl + CHF2CHFOCF3) = (1.2 +/- 2.0) x 10(-15), k(Cl + CF3CHFOCF3) < 3 x 10(-15), k(Cl + CF3CHFCF2OCHF2) < 6 x 10(-16), k(Cl + CF3CHFCF2OCH2CH3) = (3.1 +/- 1.1) x 10(-12), and k(Cl + CF3CF2CF2OCHFCF3) < 3 x 10(-15) cm3 molecule(-1) s(-1). The error limits include three standard deviations (3 sigma) from the statistical data analyses, as well as the errors in the rate coefficients of the reference compounds that are used. Infrared absorption cross sections and estimates of the trophospheric lifetimes and the global warming potentials of the fluorinated ethers are presented. The atmospheric degradation of the compounds is discussed.  相似文献   

16.
Product distribution studies of the OH radical and Cl atom initiated oxidation of CF3CH2CH2OH in air at 1 atm and 298 +/- 5 K have been carried out in laboratory and outdoor atmospheric simulation chambers in the presence and absence of NOx. The results show that CF3CH2CHO is the only primary product and that the aldehyde is fairly rapidly removed from the system. In the absence of NOx the major degradation product of CF3CH2CHO is CF3CHO, and the combined yields of the two aldehydes formed from CF3CH2CH2OH are close to unity (0.95 +/- 0.05). In the presence of NOx small amounts of CF3CH2C(O)O2NO2 were also observed (<15%). At longer reaction times CF3CHO is removed from the system to give mainly CF2O. The laser photolysis-laser induced fluorescence technique was used to determine values of k(OH + CF3CH2CH2OH) = (0.89 +/- 0.03) x 10(-12) and k(OH + CF3CH2CHO) = (2.96 +/- 0.04) x 10(-12) cm3 molecule(-1) s(-1). A relative rate method has been employed to measure the rate coefficients k(OH + CF3CH2CH2OH) = (1.08 +/- 0.05) x 10(-12), k(OH + C6F13CH2CH2OH) = (0.79 +/- 0.08) x 10(-12), k(Cl + CF3CH2CH2OH) = (22.4 +/- 0.4) x 10(-12), and k(Cl + CF3CH2CHO) = (25.7 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1). The results from this investigation are discussed in terms of the possible importance of emissions of fluorinated alcohols as a source of fluorinated carboxylic acids in the environment.  相似文献   

17.
Using FTIR smog chamber techniques, k(Cl + CF3OCF2CF2H) = (2.70 +/- 0.52) x 10(-16), k(OH + CF3OCF2CF2H) = (2.26 +/- 0.18) x 10(-15), k(Cl + CF3OC(CF3)2H) = (1.58 +/- 0.27) x 10(-18) and k(OH + CF3OC(CF3)2H) = (3.26 +/- 0.95) x 10(-16) cm3 molecule(-1) s(-1) were measured. The atmospheric lifetimes of CF3OCF2CF2H and CF3OC(CF3)2H are estimated to be 27 and 216 years, respectively. Chlorine atom initiated oxidation of CF3OCF2CF2H in 700 Torr of air in the presence of NO(x) gives CF3OC(O)F in a molar yield of 36 +/- 5% and COF2 in a molar yield of 174 +/- 9%, whereas oxidation of CF3OC(CF3)2H gives CF3OC(O)CF3 and COF2 in molar yields that are indistinguishable from 100%. Quantitative infrared spectra were recorded and used to estimate global warming potentials of 3690 and 8230 (100 year time horizon, relative to CO2) for CF3OCF2CF2H and CF3OC(CF3)2H, respectively. All experiments were performed in 700 Torr of N2/O2 diluent at 296 +/- 2 K. An empirical relationship can be used to estimate the preexponential factor, which can be combined with k(298 K) to give the temperature dependence of reactions of OH radicals with organic compounds proceeding via H-atom abstraction: log(A/n) = (0.239 +/- 0.027) log(k(OH)/n) - (8.69 +/- 0.372), k(OH) is the rate constant at 298 K and n is the number of H atoms. The rates of H-atom abstraction by OH radicals and Cl atoms at 298 K from organic compounds are related by the expression log(k(OH)) = (0.412 +/- 0.049) log(k(Cl)) - (8.16 +/- 0.72). The utility of these expressions and the atmospheric chemistry of the title hydrofluoroethers are discussed.  相似文献   

18.
The rate constants for the reactions of OH radicals with fully fluorinated alkenes containing different numbers of -CF(3) groups next to olefinic carbon, CF(2)═CF(2), CF(2)═CFCF(3), CF(3)CF═CFCF(3), and (CF(3))(2)C═CFC(2)F(5), were measured between 230 and 480 K using the flash photolysis resonance fluorescence technique to give the following expressions: k(C(2)F(4))(250-480 K) = 1.32 × 10(-12) × (T/298 K)(0.9) × exp(+600 K/T) cm(3) molecule(-1) s(-1), k(C(3)F(6))(230-480 K) = 9.75 ×10(-14) × (T/298 K)(1.94) × exp(+922 K/T) cm(3) molecule(-1) s(-1), k(trans-C(4)F(8))(230-370 K) = 7.50 × 10(-14) × (T/298 K)(1.68) × exp(+612 K/T) cm(3) molecule(-1) s(-1), k(cis-C(4)F(8))(230-370 K) = 2.99 × 10(-14) × (T/298 K)(2.61) × exp(+760 K/T) cm(3) molecule(-1) s(-1), and k(C(6)F(12))(250-480 K) = 2.17 × 10(-15) × (T/298 K)(3.90) × exp(+1044 K/T) cm(3) molecule(-1) s(-1). The kinetics of the OH reaction in an industrial sample of octofluoro-2-propene (a mixture of the cis- and trans-isomers of CF(3)CF═CFCF(3)) was studied to determine the "effective" reaction rate constant for the typically industrial mixture: k()(230-480 K) = 7.89 × 10(-14) × (T/298 K)(1.71) × exp(+557 K/T) cm(3) molecule(-1) s(-1). On the basis of these results, the atmospheric lifetimes were estimated to be 1.2, 5.3, 21, 34, and 182 days for CF(2)═CF(2), CF(3)CF═CF(2), trans-CF(3)CF═CFCF(3), cis-CF(3)CF═CFCF(3), and (CF(3))(2)C═CFC(2)F(5), respectively. The general pattern of halolalkene reactivity toward OH is discussed.  相似文献   

19.
The kinetics of the reaction of OH radical with isoprene has been investigated at a total pressure of 1-3 Torr over a temperature range of 240-340 K using the relative rate/discharge flow/mass spectrometry (RR/DF/MS) technique. The reaction of isoprene with OH was found to be independent of pressure over the pressure range of 1-3 Torr at 298 K, and the reaction had reached its high-pressure limit at 1 Torr. However, the rate constant of this reaction is found to positively depend on pressure at 1-3 Torr and 340 K. At 298 K, the rate constant of this reaction was determined to be k1 = (10.4 +/- 1.9) x 10(-11) cm3 molecule(-1) s(-1), which is in good agreement with literature values. The Arrhenius expression for this reaction was determined to be k1 = (2.33 +/- 0.09) x 10(-11) exp[(444 +/- 27)/T] cm3 molecule(-1) s(-1) at 240-340 K. The atmospheric lifetime of isoprene was estimated to be 2.9 h based on the rate constant of isoprene + OH determined at 277 K in the present work.  相似文献   

20.
The kinetics of the CN + HCNO reaction were studied using laser-induced fluorescence and infrared diode laser absorption spectroscopy. The total rate constant was measured to be k(T) = (3.95 +/- 0.53) x 10(-11) exp[(287.1 +/- 44.5)/T] cm3 molec(-1) s(-1), over the temperature range 298-388 K, with a value of k1 = (1.04 +/- 0.1) x 10(-10) cm3 molec(-1) s(-1) at 298 K. After detection of products and consideration of secondary chemistry, we conclude that NO + HCCN is the only major product channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号