首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of Tungsten trioxide (WO3) were deposited on ITO-coated flexible Kapton substrates by plasma-assisted activated reactive evaporation (ARE) technique. The influence of growth and microstructure on optoelectrochromic properties of WO3 thin films was studied. The nanocrystalline WO3 films grown at substrate temperature of 250°C were composed of vertically elongated cone-shaped grains of size 65 nm with relative density of 0.71. These WO3 films demonstrated higher optical transmittance of 85% in the visible region with estimated optical band gap of 3.39 eV and exhibited better optical modulation of 66% and coloration efficiency of 52.8 cm2/C at the wavelength of 550 nm.  相似文献   

2.
Towards a thin films electrochromic device using NASICON electrolyte   总被引:1,自引:0,他引:1  
The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr–Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film’s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700 °C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2 × 10−3 S cm−1. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, France, Sept. 9–15, 2007.  相似文献   

3.
《Current Applied Physics》2014,14(3):389-395
Vanadium pentoxide (V2O5) mixed tungsten trioxide (WO3) thin films have been synthesized by a novel pulsed spray pyrolysis technique (PSPT) on glass and fluorine doped tin oxide (FTO) coated glass substrates at 400 °C. Aqueous solutions of equimolar vanadium chloride and ammonium tungstate were mixed in volume proportions (5%, 10% and 15%) for the deposition of V2O5–WO3 thin films. The structural, morphological, optical and electrochemical properties of V2O5–WO3 thin films were investigated by FT-IR, XRD, SEM, cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The results showed that the electrochemical properties of V2O5 were altered by mixing WO3. All the films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO4 + propylene carbonate (PC)). Maximum coloration efficiency (CE) of about 49 cm2 C−1 was observed for the V2O5 film mixed with 15% WO3. The electrochemical stability of the sample was examined and it was found to be stable up to 1000 cycles.  相似文献   

4.
We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1−x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2–WO3 thin film electrode with higher VO2 content (x ≥ 0.2). Increase of VO2 content in (WO3)1−x (VO2) x films leads to red shift in optical band gap.  相似文献   

5.
Suitable host lattice and morphology for easy intercalation and deintercalation process are crucial requirements for electrochromic device. In this investigation, the evolution of structural and morphological changes and their effect on electrochromic (EC) properties of spray-deposited WO3 thin films are studied. Films of different morphologies were deposited from an ammonium tungstate precursor solution using a novel pulsed spray pyrolysis technique (PSPT) on tin-doped indium oxide (ITO) coated glass substrates by varying quantity of spraying solution. Interesting morphological transition from beads-to-wires-to-fibers as a function of quantity of sprayed solution has been demonstrated. The porosity, crystallinity and “open” structures in the films consisting of beads, wires, and fiber-like morphology enabled us to correlate these aspects to their EC performance. WO3 films comprising wire-like morphology (20 cc spraying quantity) exhibited better EC properties both in terms of coloration efficiency (42.7 cm2/C) and electrochemical stability (103 colored/bleached cycles) owing to their adequate open structure, porosity, and amorphicity, compared with the films having bead/fiber-like morphology.  相似文献   

6.
The epitaxial growth of CeO2 thin films has been realized on (100) InP substrates using reactive r.f. magnetron sputtering. Oxide films were nucleated in the presence of molecular hydrogen (4% H2/Ar sputtering gas) in order to reduce the native oxide formation on the InP surface, which interferes with CeO2 epitaxy. A metal cerium target was used as the cation source, with water vapor serving as the oxidizing species. Epitaxial films were sputter-deposited at a substrate temperature of 550 °C in a H2O vapor pressure of approximately 10-3 Torr. Crystallinity of the oxide films was examined using θ–2θ X-ray diffraction, ω-rocking curves, and in-plane φ-scans. The best results were obtained when the initial nucleation layer was deposited with P(H2O)<10-5 Torr, followed by deposition at P(H2O)=10-3 Torr. The epitaxial growth of CeO2 on InP could prove enabling in efforts to integrate functional oxides with InP-based optoelectronic and microwave technologies. Received: 20 February 20002 / Accepted: 21 February 2002 / Published online: 19 July 2002  相似文献   

7.
G. Dimoulas  S. Markos  P. Tsiakaras 《Ionics》1997,3(5-6):453-456
The catalytic and the electrocatalytic behavior of MnOx oxides deposited on Yttria Stabilized Zirconia (YSZ) in the form of thin porous films, was studied during the reaction of methane activation at high methane to oxygen ratios. Experiments were carried out in a continuous flow well-mixed reactor (CSTR), at atmospheric total pressure and in a temperature range between 500–850 °C. It was found that the electrochemical pumping of oxygen anions (O2−) through the solid electrolyte (YSZ) affect drastically the rates of CO2, C2H4 and C2H6 formation and consequently the C2 selectivity. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

8.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

9.
Tungsten oxide (WO3) thin films were prepared by an electron beam deposition technique. Films were deposited onto fluorine-doped tin oxide (FTO)-coated glass substrates maintained at 523 K. The as-deposited films were found to be amorphous and crystallized after annealing at 673 K. The electrochromic and optical properties, structure, and morphology are strongly dependent on the annealing conditions. Cyclic voltammetry (C-V) was carried out in the potential range −1 to +1 V. Before and after colouration, the films were characterized by measuring transmittance and reflectance. The colouration efficiencies at 630 nm are about 39.4 cm2 C−1 and 122.2 cm2 C−1 for amorphous and crystalline films, respectively. An investigation of self-bleaching for the coloured film revealed that the film fades gradually over time.  相似文献   

10.
In the present study, ruthenium oxide (RuO2) thin films were deposited on the stainless steel (s.s.) substrates by anodic deposition. The nucleation and growth mechanism of electrodeposited RuO2 film has been studied by cyclic voltammetry (CV) and chronoamperometry (CA). The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-rays (EDAX) for structural, morphological, and compositional studies. The electrochemical supercapacitor study of ruthenium oxide thin films have been carried out for different film thicknesses in 0.5 M H2SO4 electrolyte. The highest specific capacitance was found to be 1190 F/g for 0.376 mg/cm2 film thickness.  相似文献   

11.
Iron oxide thin films have been obtained by spray pyrolysis using 100% methanolic and ethanolic solutions of iron tri-chloride. The films were deposited onto ITO-coated glass substrates. The preparative conditions have been optimized to obtain compact, pin-hole-free and smooth thin films which are adherent to the substrate. The structural, morphological and compositional characterizations have been carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The films deposited using ethanolic solution results into pure hematite; α-Fe2O3 thin films, however, films deposited using methanolic solution consists of hematite and maghemite-c phases of iron oxide. The films are nanocrystalline with particle size of 30-40 nm. The optical absorbance of the film was of the order of 105 cm−1. The optical band gap of films was found to be 2.26 and 2.20 eV for the films deposited using methanolic and ethanolic solutions, respectively.  相似文献   

12.
The electrochemical characteristics and structural changes associated with discharge and charge of several tungstic acids such as H2WO4 and H2WO4 · H2O have been investigated. The suitability of these substances as new cathode materials for nonaqueous lithium batteries has been assessed. H2WO4, having only coordinated water molecules, showed a discharge capacity of about 410 Ah kg–1 of acid weight and a discharge potential around 2 V vs. Li/Li+. This capacity was much higher than the 40 180 Ah kg–1 of anhydrous WO3. H2WO4 showed a good charge-discharge cycling behavior at a capacity below 1e /W. However, the formation of a stable phase such as Li2WO4 during the cyclings limited the cycling number. In addition, the crystal structure of H2WO4 changed from orthorhombic to tetragonal during discharge, but the original layered lattice was kept on discharge to 1.5e /W. On the other hand, a significant decrease in the layer spacing of H2WO4 · H2O took place with discharge, due to the direct interaction between the interlayer water molecule and the lithium inserted between the layers. In this paper, in particular, the effect of the coordinated and hydrated water molecules in the acid structure on the electrochemical behavior is discussed.  相似文献   

13.
Cathodic electrodeposition is a rather unexplored route for the synthesis of mixed oxides. Two different mechanisms are generally reported which lead to oxide thin film formation: (i) the direct reduction of the oxidation state of the metallic elèment, (ii) an interfacial pH increase and local supersaturation followed by oxide precipitation. We emphasize the major requirements for mixed thin film formation via electrosynthesis and present results obtained with two different systems of special interest. The first, ZnO/Eu(OH)x, is based on the second mechanism. The second, TiO2/WO3, is a mixed mechanism process. We describe the conditions under which europium oxide can be deposited cathodically. This oxide is obtained by co-deposition with zinc oxide. After a heat treatment at 400 °C, X-ray diffraction shows that the films are mainly made of monoclinic Eu2O3. The successful WO3–TiO2 mixed film electrodeposition in a wide compositional range is also reported.  相似文献   

14.
J. Purans  A. Kuzmin  Ph. Parent  C. Laffone 《Ionics》1998,4(1-2):101-105
Oxygen K-edge x-ray absorption spectra were studied on the electrochromic amorphous thin film a-WO3 in the comparison with crystalline oxides having variable electronic (d0, d1, d2) and atomic structure: monoclinic m-WO3 (insulator - d0), cubic Na0.6WO3 (metal - d1), cubic ReO3 (metal - d1), layered-type hexagonal h-WO3, WO3H2O and with intercalated HxReO3 (metal - d2), HxWO3 oxides having a metal-isulating transition. The changes in the XANES range 10–15 eV above the absorption edge are interpreted based on the known band-structure calculations. The high-energy features are related to the multiple-scattering processes (EXAFS) on the nearest atoms. The intensity of the feature at 550–560 eV is attributed for the first time to the value of the metal-oxygen-metal bond angle. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

15.
Tungsten trioxide has shown good sensing properties towards various gases. Recently thin nanostructured WO3 films have been tested. Due to their large surface area to volume ratio they exhibit good sensitivity depending on the grain size. However in conventional WO3 thin films the average grain size exceeds the thickness of the surface space charge layer, so the electrical conduction is mainly controlled by the carriers transport across the grain boundaries. An alternative way seems to be in a monocrystalline material with nanometric dimensions. Our objective is to fabricate nanosized tungsten oxide rods and to test their sensing properties under gas adsorption. In this work, we focus on the growth, the structure and the electrical properties of tungsten nanorods. The tungsten oxide nanorods were grown by vapour transport from a WO3 layer onto a substrate (Mica). The nanorods growth was controlled by the temperature gradient between the WO3 layer and the substrate. Their morphology was investigated by AFM and their structure by TED and TEM. We have investigated the conductivity of the WO3 nanorods with a technique derived from Atomic Force Microscopy operating in contact mode with a conductive tip (Resiscope).  相似文献   

16.
A well-known gasochromic material is Pt particle-dispersed tungsten trioxide (Pt/WO3). Its optical properties could make it effective as a hydrogen gas sensor. In this study, Pt nanoparticle-dispersed WO3 thin films were prepared using the sol–gel process, and their optical and electrical properties dependent on the working environment (i.e., temperature, hydrogen gas concentration, oxygen partial pressure, etc.) were investigated. The Pt/WO3 thin films prepared at 400 °C showed the largest change in optical transmittance and electrical conductivity when exposed to hydrogen gas compared with the films prepared at other temperatures. The optical absorbance and electrical conductivity were found to be dependent on the hydrogen and oxygen gas concentration in the atmosphere because generation and disappearance of W5+ in the thin films depend on the equilibrium reaction between injection and rejection of H+ into and from the thin films. In addition, the equilibrium reaction depends on the hydrogen and oxygen gas concentrations.  相似文献   

17.
J.H. Hao  J. Gao 《Applied Surface Science》2006,252(15):5590-5593
The interaction between light and electrons in oxide compounds forms the basis for many interesting and practical effects, which are related to microstructure, energy band, traps, carrier transport and others. Thin films of oxides like WO3, Ga2O3, Y2O3 and SrTiO3 were investigated using various improved optical and luminescent techniques. The home-made systems for optical and luminescent measurements were described in detail. The facilities of photo-Hall and photoconductivity transients have been proven to be powerful tools in the studies, which allow us to perform photoinduced process and relaxation measurements over a wide time range from 10−8 to 104 s. Furthermore, we extended the measurement capabilities of the commercial luminoscope by using an interferometer system with optical fiber and illuminance meter instead of an optical microscope. The cathodoluminescent measurements can be performed at a relative high pressure (20-60 mTorr) compared to ultra-high-vacuum condition of most commercial products. Luminescent characterization was employed as a probe to study doping ions, oxygen vacancies, trap and/or exciton levels in oxide thin films. Our results suggest that various traps and/or excitons in thin films of WO3, Ga2O3 and SrTiO3 involve in the process of photoconductivity relaxation and emission.  相似文献   

18.
G. Lu  Dr. N. Miura  N. Yamazoe 《Ionics》1998,4(1-2):16-24
Stabilized zirconia-based electrochemical devices for which the sensing electrode was provided with a single-metal oxide were tested for NO and NO2 sensing properties at high temperature. Among the many single-metal oxides examined, WO3 was found to give the best sensing properties to NO and NO2 at 500–700°C. The EMF response of the WO3-attached device was linear to the logarithm of NO or NO2 concentration. The response and recovery kinetics were speedy. The device gave very small cross-sensitivities to H2, CO, CH4, CO2 and water vapor. The sensing mechanism involving mixed-potential was confirmed from the measurements of polarization curves.  相似文献   

19.
Solid oxide fuel cells directly convert the chemical energy of a fuel into electricity. To enhance the efficiency of the fuel cells, the thickness of the gastight solid electrolyte membranes should be as thin as possible. Y2O3-stabilised ZrO2 (YSZ) electrolyte films were prepared by reactive sputtering deposition using Zr/Y targets in Ar/O2 atmospheres. The films were 5 – 8 μm thin and were deposited onto anode substrates made of a NiO/YSZ composite. After deposition of a cathode with the composition La0.65Sr0.35MnO3 the electrochemical properties of such a fuel cell were tested under operating conditions at temperatures between 600 °C and 850 °C. Current-voltage curves were recorded and impedance measurements were performed to calculate apparent activation energies from the fitted resistance data. The conductivity of the YSZ films varied between 4.6·10−6 S/cm and 2.2·10−5 S/cm at 400 °C and the fuel cell gave a reasonable power density of 0.4 W/cm2 at 0.7 V and 790 °C using H2 with 3 % H2O as fuel gas. The gas compositions were varied to distinguish the electrochemical processes of the anode and cathode in the impedance spectra. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

20.
Nanocrystalline cerium oxide (CeO2) thin films were deposited onto the fluorine doped tin oxide coated glass substrates using methanolic solution of cerium nitrate hexahydrate precursor by a simple spray pyrolysis technique. Thermal analysis of the precursor salt showed the onset of crystallization of CeO2 at 300 °C. Therefore, cerium dioxide thin films were prepared at different deposition temperatures from 300 to 450 °C. Films were transparent (T ~ 80%), polycrystalline with cubic fluorite crystal structure and having band gap energy (Eg) in the range of 3.04–3.6 eV. The different morphological features of the film obtained at various deposition temperatures had pronounced effect on the ion storage capacity (ISC) and electrochemical stability. The larger film thickness coupled with adequate degree of porosity of CeO2 films prepared at 400 °C showed higher ion storage capacity of 20.6 mC cm? 2 in 0.5 M LiClO4 + PC electrolyte. Such films were also electrochemically more stable than the other studied samples. The Ce4+/Ce3+ intervalancy charge transfer mechanism during the bleaching–lithiation of CeO2 film was directly evidenced from X-ray photoelectron spectroscopy. The optically passive behavior of the CeO2 film (prepared at 400 °C) is affirmed by its negligible transmission modulation upon Li+ ion insertion/extraction, irrespective of the extent of Li+ ion intercalation. The coloration efficiency of spray deposited tungsten oxide (WO3) thin film is found to enhance from 47 to 53 cm2 C? 1 when CeO2 is coupled with WO3 as a counter electrode in electrochromic device. Hence, CeO2 can be a good candidate for optically passive counter electrode as an ion storage layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号