首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical activation (change in reactivity or activation energy) of polymer systems with a locally nonequilibrium (relaxation) response to mechanical perturbations is studied. Mechanical activation in such systems is caused by deviation of the medium microstructure from the state of local thermodynamic equilibrium. A system of equations for shear and uniaxial (elongation) deformation modes is formulated. The influence of local nonequilibrium in the medium microstructure on the mechanism and regular features of the macroscopic transfer process and also the effect of the stressed state of the polymer system and structural, kinetic, and orientation (steric) factors on the reactivity of polymer systems are analyzed. It is demonstrated that the reactivity of systems with a complicated internal structure has an energetic entropic character and depends on the reaction zone size (effect of a “nanoreactor”). The ranges of mechanical activation parameters affecting the reactivity and activation energy of polymer systems are determined for the shear and uniaxial modes of their deformation.  相似文献   

2.
In this work, we propose a model for surfaces made of inextensible fibers that generalizes the existing approach to fibered networks, by taking into account not only the bending resistance of individual fibers, but also their resistance to twist. Assuming that the total energy of the network depends on the shear between the fibers as well as their curvature and twist, we derive the equilibrium equations and discuss an application to a cylindrical shell made of inextensible helical fibers. We discuss the effect of twisting stiffness on the loading–extension curve of the cylinder.  相似文献   

3.
The determination of the initial configuration is essential in simulating the formation process of en echelon faults in order to estimate strong motion due to them. It is observed in Riedel shear model experiments using periodic shear bands that the bifurcation plays a key role when these faults are initiated. Therefore, this paper develops a analysis method of identifying the configuration that is most likely to be realized among those which can be initiated. The realizable configuration is determined as the one that minimizes the strain energy among all possible configuration. The proposed method uses a functional which provides the total strain energy of the body, and the configuration is computed by using suitable approximate solutions of the functional. Numerical computation shows that the predicted configuration is in good agreement with the observed one for both en echelon faults and Riedel shears. Furthermore, it is shown that the configuration depends little on material properties, as the shape of periodic shear bands in various materials is similar.  相似文献   

4.
In this paper, the propagation of Rayleigh waves in orthotropic non-viscous fluid-saturated porous half-spaces with sealed surface-pores and with impervious surface is investigated. The main aim of the investigation is to derive explicit secular equations and based on them to examine the effect of the material parameters and the boundary conditions on the propagation of Rayleigh waves. By employing the method of polarization vector the explicit secular equations have been derived. These equations recover the ones corresponding to Rayleigh waves propagating in purely elastic half-spaces. It is shown from numerical examples that the Rayleigh wave velocity depends strongly on the porosity, the elastic constants, the anisotropy, the boundary conditions and it differs considerably from the one corresponding to purely elastic half-spaces. Remarkably, in the fluid saturated porous half-spaces, Rayleigh waves may travel with a larger velocity than that of the shear wave, a fact that is impossible for the purely elastic half-spaces.  相似文献   

5.
A theoretical framework of the shear localization analysis was developed for semi-solid materials taking into account a non-equilibrium relationship between viscous deformation, pressure and interfacial surface energy. Considering a shear layer model, the necessary condition of perturbation growth and subsequent shear localization was derived. The results revealed that the localization phenomenon in the semi-solid deformation strongly depends on the difference between irreversible viscous work done on pores and grains and the reversible viscous deformational work stored as the interfacial surface energy. This thermodynamic quantity indicates the possibility of a perturbation growth or decade in terms of the process parameters such as dilatancy, permeability and also the fraction of the solid skeleton.  相似文献   

6.
The purpose of this research is to investigate the basic issues that arise when generalized plane strain deformations are superimposed on anti-plane shear deformations in isotropic incompressible hyperelastic materials. Attention is confined to a subclass of such materials for which the strain-energy density depends only on the first invariant of the strain tensor. The governing equations of equilibrium are a coupled system of three nonlinear partial differential equations for three displacement fields. It is shown that, for general plane domains, this system decouples the plane and anti-plane displacements only for the case of a neo-Hookean material. Even in this case, the stress field involves coupling of both deformations. For generalized neo-Hookean materials, universal relations may be used in some situations to uncouple the governing equations. It is shown that some of the results are also valid for inhomogeneous materials and for elastodynamics.  相似文献   

7.
We consider the problem of determining the stability boundary for an elastic rod under thrust and torsion. The constitutive equations of the rod are such that both shear of the cross-section and compressibility of the rod axis are considered. The stability boundary is determined from the bifurcation points of a single nonlinear second order differential equation that is obtained by using the first integrals of the equilibrium equations. The type of bifurcation is determined for parameter values. It is shown that the bifurcating branch is the branch with minimal energy. Finally, by using the first integral, the solution for one specific dependent variable is expressed in terms of elliptic integrals. The solution pertaining to the complete set of equilibrium equations is obtained by numerical integration.  相似文献   

8.
In order to expand the predictive capability of single-point turbulence closure models to account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. The calibration is based on homogeneous shear flow where disturbances can be described by rapid distortion theory (RDT). The relationship between RDT and linear stability theory is exploited in order to obtain a closed set of modeled equations. The linear disturbance equations are solved directly so that the numerical simulation yields a database from which the closure coefficients in the ensemble-averaged disturbance equations can be determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

10.
We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.  相似文献   

11.
The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for expansive comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The particle sizes are assumed to be distributed according to the Schuhmann power law. The condition that the rate of release of the local kinetic energy must be equal to the interface fracture energy yields a relation between the particle size, the shear strain rate, the fracture energy and the mass density. As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events, the average particle size is proportional to the (−2/3) power of the shear strain rate. The main characteristic of the comminution process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic energy of shear strain rate to the maximum possible strain energy that can be stored in the same volume of material. It is shown that the kinetic energy release is proportional to the (2/3)-power of the shear strain rate, and that the dynamic comminution creates an apparent material viscosity inversely proportional to the (1/3)-power of that rate. After comminution, the interface fracture energy takes the role of interface friction, and it is pointed out that if the friction depends on the slip rate the aforementioned exponents would change. The effect of dynamic comminution can simply be taken into account by introducing the apparent viscosity into the material constitutive model, which is what is implemented in the paper that follows.  相似文献   

12.
The compressibility effect on the cylinder drag reduction due to air suction through the surface of a central body in a circular vortex cell is estimated on the basis of the solution of the steady Reynolds equations closed by the shear stress transfer model, together with the continuity, energy, and state equations.  相似文献   

13.
This article analyses the propagation of nonlinear periodic and localized waves. It examines crystals whose lattice consists of two periodic sub-lattices. Arbitrary large displacements of sub-lattices u are assumed. This theory takes into account the additional element of translational symmetry. The relative displacement in a sub-lattice for one period (and even for a whole number of periods) does not alter the structure of the whole complex lattice. This means that its energy does not vary under such a relatively rigid translation of sub-lattices and should represent the periodic function of micro-displacement. The energy also depends on the gradients of macroscopic displacement describing alterations in the elementary cells of a crystal. The variational equations of macro- and micro-displacements are shown to be a nonlinear generalization of the well-known linear equations of acoustic and optical modes of Karman, Born, and Huang Kun. Exact solutions to these equations are obtained in the one-dimensional case—localized and periodic. Criteria are established for their mutual transmutations.  相似文献   

14.
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration – or equivalently – the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.  相似文献   

15.
Zhou  Zhen-Gong  Sun  Yu-Guo  Wang  Biao 《Meccanica》2004,39(1):63-76
In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to the harmonic anti-plane shear waves is investigated by use of the non-local theory for impermeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near at the crack tip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the thickness of the strip, the circular frequency of incident wave and the lattice parameter.  相似文献   

16.
The fully dynamical motion of a phase boundary is examined for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. Previous work has shown that a preexisting stationary phase boundary in such a material can be set in motion by a finite amplitude shear pulse and that an infinity of solutions is possible according to the present theory. In this work, these solutions are examined in detail from the perspective of energy and dissipation. It is shown that there exists at most two solutions which involve no dissipation (corresponding to conservation of mechanical energy). It is also shown that there exists one solution that maximizes the mechanical energy dissipation rate. The total mechanical energy remaining in the dynamical fields after one such pulse-phase boundary encounter is shown to exceed the total methanical energy after either an energy minimal quasi-static motion or a maximally dissipative quasi-static motion.  相似文献   

17.
Turbulence decay in a strongly stratified medium is simulated by a direct pseudo-spectral code solving the three-dimensional equations of motion under the Boussinesq approximation. The results are compared to non-stratified simulations results. We focus on the production of mean shear energy observed in the stratified case. We then simulate the decay of stratified turbulence when affected by an initial horizontal mean flow and show that this mean flow is the major component remaining at large t. Next, we give some analytical elements on wave-shear interaction by using a simple refraction calculation with WKB hypothesis. This calculation is illustrated by simulating the interaction between one monochromatic internal wave and a vertical shear profile. We conclude that the existence of singularities in the mean shear production term in the presence of internal gravity waves may be one of the possible mechanisms involved within stratified turbulent shear flows.  相似文献   

18.
We consider an approach to the derivation of thermodynamic equations of state by averaging the dynamic equations of particles of the crystal lattice. Microscopic analogs of macroscopic variables such as pressure, volume, and thermal energy are introduced. An analysis of the introduced variables together with the equations of motion permits obtaining the equation of state. Earlier, this approach was used to obtain the equation of state in the Mie-Grüneisen form for a one-dimensional lattice. The aim of this paper is to develop and generalize this approach to the three-dimensional case. As a result, we obtain the dependence of the Grüneisen function on the volume, which is compared with the computations performed according to well-known models with experimental data taken into account. It is proved that the Grüneisen coefficient substantially depends on the form of the strain state. Moreover, we refine the equation of state; namely, we show that the Grüneisen coefficient depends on the thermal energy, but this dependence in the three-dimensional case is much weaker than in the one-dimensional case. A refined equation of state containing a nonlinear dependence on the thermal energy is obtained  相似文献   

19.
In this brief note we consider an elastic-plastic material whose strain energy depends not only on the plastic strain but also on spatial gradient. The governing equations of motion are obtained by maximizing the rate of global energy dissipation. The resulting differential equations are specialized for the case where the strain energy depends only upon the density of geometrically necessary dislocations.  相似文献   

20.
高智 《力学进展》2005,35(3):427-438
在计算机发达的时代, 高雷诺($Re$)数绕流计算中有无必要使用简化NS方程组, 本文讨论这个问题. 主要内容如下: (1)高$Re$数绕流包含3种基本流动: 所有方向对流占优流动、所有方向对流扩散竞争流动和部分方向对流占优部分方向对流扩散竞争流动(简称干扰剪切流动), 3个基本流动的特征彼此不同且在流场中所占领域大小彼此相差悬殊, NS方程区域很小,它们的最简单控制方程组Euler、Navier-Stokes (NS)和扩散抛物化(DP) NS方程组的数学性质彼此不同, 因此利用Euler-DPNS-NS方程组体系分析计算高$Re$数绕流流动就是一个合乎逻辑的选择, 该法与利用单一NS方程组的常用方法可以彼此检验和补充. (2)流体之间以及流体与外界的动量、能量和质量交换, 流态从层流到湍流的演化主要发生在干扰剪切流动中, 干扰剪切流及其最简单控制方程------DPNS方程组具有基础意义; DPNS方程组笔者在1967年已提出. (3)诸简化NS方程组: DPNS、抛物化(P)NS、薄层(TL)NS、黏性层(VL)NS方程组的发展、相互关系, 它们的历史贡献和今后的用途; 它们的数学性质均为扩散抛物型, 但它们包含的黏性项彼此有所不同; 从流体力学角度来看, 它们中只有DPNS方程组能够准确描述干扰剪切流动. 提出把诸简化NS方程组统一为DPNS方程组的建议. (4)干扰剪切流------DPNS方程组与无干扰剪切流------边界层方程组之间的关系以及进一步研究干扰剪切流的意义.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号