首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 micro/nanospheres were synthesized by a combination process contains hydrolysis of titanium tetra-n-butyl in mixed solution of anhydrous ethanol/ammonia and the subsequent calcination under 550 °C for 7 h. The pH values of the mixed solution were tuned to be 10.4, 11.0 and 11.6, respectively, by adding different amounts of ammonia. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the morphologies and the crystallinity. X-ray diffraction (XRD) patterns indicated that pH value of the precursors has an important effect on the crystal phase composition. UV-vis diffuse reflectance spectrum was applied to characterize the optical properties of samples. Degradation of methylene blue under the irradiation of 300 W Hg lamp confirmed the enhanced photocatalytic activity of TiO2 micro/nanospheres. In addition, the formation mechanism was proposed.  相似文献   

2.
Titanium dioxide (TiO2) thin films with different nanostructures such as nano-particles and separated vertical columns were grown by glancing angle deposition (GLAD) in an electron beam evaporation system. The photocatalytic properties of grown TiO2 films with different deposition angles and different annealing temperatures were evaluated by following decomposition of methyl orange under ultraviolet (UV) light irradiation. The results suggest that increased surface area due to the GLAD process could improve the photocatalytic properties of TiO2 films.  相似文献   

3.
Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO2) to form supported TiO2/Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO2/Pd-CF exhibits higher catalytic activity than TiO2/CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.  相似文献   

4.
Titanium dioxide (TiO2) films are deposited by codoping nitrogen and carbon on indium tin oxide-coated substrates as visible light (Vis)-enabled catalysts. The X-ray diffraction peak intensity of the preferential orientation in (2 1 1) plane declines when the topmost 1.0 μm layer of the film is ground off. The decrease in the crystallite size and the crystallinity of anatase TiO2 film is also evidenced by a shift towards the high wave number and broadening of the Raman spectra. Low doping concentrations of N (1.3%) and C (1.8%) are estimated by X-ray photoelectron spectroscopy (XPS) which displays an N 1s peak at 396.8 eV and a C 1s peak at 282.1 eV, respectively. This is attributed to the substitution of the oxygen sites with nitrogen and carbon, which is believed to be responsible for the Vis photocatalytic activity into a wavelength of >500 nm. The cross-sectional transmission electron microscopy images show larger pores at the grain boundaries and in larger columnar crystals than in the undoped TiO2 film. All of these results indicate that porosity, crystallinity and shift in the preferential orientation are more pronounced close to the surface than close to the bottom of the sample. Wettability upon measurement of the water contact angle, methylene blue degradation and radical formation tests under both ultraviolet and Vis irradiation demonstrate that the topmost surface renders not only a larger reactive surface area but also a better carrier transport route than the rest of the film, improving its photocatalytic activity. These results show that surface porosity of the film is dominant than the tailoring of the photocatalytic activities of N,C-codoped TiO2 catalysts.  相似文献   

5.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

6.
The photocatalytic activity of silver deposited Degussa P25 titanium dioxide (Ag-DP25) in the photodegradation of methyl orange (MO) was investigated. The photocatalysts were characterized using PXRD, SEM, EDX, FTIR and UV-vis spectrophotometer. The obtained results show that the silver (Ag0) deposited TiO2 exhibited visible light plasmon absorption band. The degradation experiment reveals that the catalytic property of Ag-DP25 in the degradation of MO is more efficient than that of commercially available Degussa P25 TiO2 (DP25) samples. The improvement of Ag-DP25 catalyst efficiency strongly depends on the content of silver (Ag) deposits. The present study shows that the degradation process is dominated by Ag-TiO2 photocatalytic system, complying with pseudo-first order rate law. The higher rate of photodegradation observed on Ag-DP25 at pH 6.6 can be correlated to the ratios of the concentrations of the ionized to the neutral dye molecules and also to the higher concentration of hydroxylated surface, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes in the semiconductor particles increases the probability of formation of excited oxygen atom which is a reactive species readily oxidizing the organic dye molecule. The reduction of pH during the course of the reaction is attributed to the complete mineralization of the dye.  相似文献   

7.
Anatase phase TiO2 and nitrogen (N) doped TiO2 thin films were synthesized by an ultrasonic spray pyrolysis technique on c-Si (100) substrates in the temperature range 300-550 °C. The former used a precursor solution of titanium oxy acetylacetonate in methanol whereas the later used a titanium oxy acetylacetonate hexamine mixture in methanol. Homogeneity across the film’s thickness and the nature of the film-substrate interface were studied by dynamic depth profiling acquired using secondary ion mass spectrometry SIMS. The stoichiometry and bonding state of various species present in the films were studied using X-ray photoelectron spectroscopy (XPS). N-doping was confirmed by both SIMS and XPS. XPS studies revealed that the nitrogen content of the films synthesized at 300 °C (3.2%) is high compared to that of films made at 350 °C (1.3%).  相似文献   

8.
Carbon-TiO2 nanohybrids (CTs, 5-10 nm TiO2 nanocrystals evenly dispersed on carbon film) have been successfully prepared via a mild, one-step hydrothermal approach. The interactions and electronic structures of carbon and TiO2 nanoparticles and the enhanced visible photocatalytic mechanism were investigated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry in detail. Meanwhile, it was demonstrated that the as-obtained CTs had a large BET specific surface area of 304.6 m2/g and showed excellent photocatalytic abilities towards organic (Rhodamine B, benzene) and inorganic pollutant (K2Cr2O7) degradation in visible light. This work provided a new approach for the high performance catalyst design towards new energy sources and environmental issues.  相似文献   

9.
A series of Nd-TiO2 powders have been prepared by the sol-gel technique with neodymium nitrate and tetra-n-butyl titanium as raw materials, and then Nd-TiO2 nanotubes were fabricated by the hydrothermal method with a 10 mol l−1 NaOH solution. The as-prepared Nd-TiO2 nanotubes were characterized by TEM, XRD, DRS, and XPS, and their photocatalytic activity was also tested in the case of the degradation of methyl orange in water. TEM photograph showed that Nd-TiO2 nanotubes were about 10-20 nm in diameter, with the lengths range from 100 to 300 nm. TiO2 nanotubes contained anatase and rutile crystallites. However, 0.3% Nd-TiO2 nanotubes contained anatase crystallites, and only little rutile crystallites, so it is shown that neodymium doping hindered the phase transformation from anatase into rutile. Nd doping increased the visible-light absorption ability of Nd-TiO2 nanotubes, and a red shift for Nd-TiO2 nanotubes appeared when compared to TiO2 nanotubes. XPS analysis showed that two types of oxygen existed on the photocatalyst surface, including metal-O and hydroxyl group, and more hydroxyl group was on the surface of 2% Nd-TiO2 nanotubes than on the surface of TiO2 nanotubes. Nd doping enhanced the photocatalytic activities of Nd-TiO2 nanotubes, and 0.3% Nd-TiO2 nanotubes exhibited the highest photocatalytic activity.  相似文献   

10.
PES-TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in PES casting solutions. The crystal structure, thermal stability, morphology, hydrophilicity, permeation performance, and mechanical properties of the composite membranes were characterized in detail. XRD, DSC and TGA results showed that the interaction existed between TiO2 nanopaticles and PES and the thermal stability of the composite membrane had been improved by the addition of TiO2 nanopaticles. As shown in the SEM images, the composite membrane had a top surface with high porosity at low loading amount of TiO2, which was caused by the mass transfer acceleration in exposure time due to the addition of TiO2 nanopaticles. At high loading amount of TiO2, the skinlayer became much looser for a significant aggregation of TiO2 nanopaticles, which could be observed in the composite membranes. EDX analysis also revealed that the nanoparticles distributed in membrane more uniformly at low loading amount. Dynamic contact angles indicated that the hydrophilicity of the composite membranes was enhanced by the addition of TiO2 nanopaticles. The permeation properties of the composite membranes were significantly superior to the pure PES membrane and the mean pore size also increased with the addition amount of TiO2 nanopaticles increased. When the TiO2 content was 4%, the flux reached the maximum at 3711 L m−2 h−1, about 29.3% higher than that of the pure PES membrane. Mechanical test also revealed that the mechanical strength of composite membranes enhanced as the addition of TiO2 nanopaticles.  相似文献   

11.
Poly(N-methyl pyrrole) coating was successfully electrodeposited on steel substrates in mixed electrolytes of dodecyl benzene sulphonic acid (DBSA) with oxalic acid in the absence and the presence of TiO2 nanoparticles (NPs). The morphology and compositions were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray spectroscopy (EDX). X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) were used to calculate the size of nanoparticles. Electrode/polymer/electrolyte system was studied by Electrochemical Impedance Spectroscopy (EIS). The FESEM micrographs suggest that the incorporation of TiO2 nanoparticles affects the morphology of the film significantly and makes the TiO2 to be loosely piled up with PMPy. The results of EIS showed that synthesized PMPy in the presence of TiO2 NPs increases and decreases the Rpo and Cc of the coating respectively. The increase of the area of synthesized PMPy in the presence of nanoparticles can increase its ability to interact with the ions liberated during the corrosion reaction of steel in NaCl solution.  相似文献   

12.
We have investigated the morphology and surface electron states of LiBq4 deposited on ITO and CuPc/ITO, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM observations indicate that LiBq4 can form a much more uniform film on CuPc than that on ITO. Furthermore, X-ray photoelectron spectroscopy (XPS) is utilized to further demonstrate the AFM results. From the analysis of XPS, we found that LiBq4 molecules have poor thermal stability, they are seriously oxidized during depositing; but when a CuPc layer is inserted between LiBq4 and ITO film, the oxidation and surface contamination of LiBq4 are significantly reduced. It is then concluded that the introduction of a CuPc buffer layer under the LiBq4 film can improve the film quality of LiBq4.The XPS results also testified the fact that no coordination bonds between N atoms and B atoms are formed in LiBq4 molecules, which make LiBq4 to be potential blue organic light-emitting material.  相似文献   

13.
This paper presents the X-ray Photoelectron Spectroscopy (XPS) analysis for the undegraded and degraded Gd2O2S:Tb3+ thin film phosphor. The thin films were grown with the pulsed laser deposition (PLD) technique. XPS measurements were done on Gd2O2S:Tb3+ phosphor thin films before and after electron degradation. The XPS technique has proven the presence of Gd2O3 on the degraded and undegraded thin film spots. The presence of the SO2 bonding was also detected after degradation. This clearly indicates that surface reactions did occur during prolonged electron bombardment in an oxygen atmosphere.  相似文献   

14.
A new mono-functionalized porphyrin derivative, 5-mono-[4-(2-(4-hydroxy)-phenoxy)ethoxy]-10,15,20-triphenylporphyrin (3) and its Cu(II) (3a), Zn(II) (3b) and Ni(II) (3c) metalloporphyrins were synthesized and characterized by using various spectroscopic techniques. The corresponding 3a, 3b, 3c-TiO2 photocatalysts were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities of 3a, 3b, 3c-TiO2 were investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under the halogen lamp irradiation. The results indicated that all the 3a, 3b, 3c enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP, and 3a-TiO2 exhibited the highest photocatalytic activity. The result is considered a combined action of potential match of 3a with TiO2 CB and effective impregnated of 3a onto the surface of TiO2.  相似文献   

15.
A TiO2(1 1 0)-(1 × 1) surface was prepared in an ultra-high vacuum, transported in laboratory air, and observed with a scanning tunneling microscope (STM) operated in a vacuum of 10−4 Pa. Empty state images showed atomically flat terraces separated by single-height steps, on which 5-fold-coordinated surface Ti atoms were observed as spots arranged in a rectangular lattice. The Ru(4,4′-dicarboxy-2,2′-bipyridine)2(NCS)2 (N3) dye was adsorbed on the TiO2 surface by immersing the TiO2 wafer into an acetonitrile solution of the dye. In the empty state images, individual N3 molecules were observed as oval particles protruding by 0.6 nm from the TiO2 surface. The oval shape elongated to the [1  0] directions was attributed to electron tunneling from tip to unoccupied states localized at the two carboxyl groups bound to the TiO2 surface.  相似文献   

16.
We report photoelectron diffraction (PED) experiments of weakly sub-stoichiometric TiO2(1 0 0) rutile surfaces. Apart from standard core-level PED from the Ti-2p3/2 line, we have studied valence band PED from the defect induced Ti-3d states in the insulating band gap. For maximum yield, the latter were resonantly excited at the Ti-2p absorption edge. The PED patterns have been analyzed within the forward scattering approximation as well as by comparison with simulated PED patterns obtained in multiple scattering calculations. The analysis shows that the defect induced Ti-3d charge is mainly located on the second layer Ti atoms.  相似文献   

17.
Based on the 3-(trimethoxysilyl) propylmethacrylate (MPS) modified TiO2 particles, the TiO2/poly (methyl methacrylate) (PMMA) composite particles have been prepared successfully via emulsifier-free emulsion polymerization in water. A facile floating-sinking method is proposed to roughly evaluate the composite particles’ density. Chemical component of obtained composite particles was identified by Fourier transform infrared spectra (FTIR). The morphology and grain size of the composite particles were investigated by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Thermal analysis of the composite particles was measured by differential thermal analysis-thermo gravimetric analysis (DTA-TGA). The zeta potential and electrophoretic mobility of composite particles with suitable density in water was measured by dynamic light scattering (DLS).  相似文献   

18.
Gel polymer electrolyte (GPE) films comprising of poly(vinylidenefluoride), propylene carbonate, ethylene carbonate and zinc trifluoromethane sulfonate are prepared and characterized. The composition of GPE is optimized to contain minimum liquid components with a maximum specific conductivity of 3.94×10−3 S cm−1 at (25±1) °C. A detailed investigation on the properties such as ionic conductivity, transport number, electrochemical stability window, reversibility of Zn/Zn2+ couple and Zn/gel electrolyte interfacial stability have been carried out. The ionic conductivity follows a VTF behaviour with an activation energy of about 0.0014 eV. Cationic transport number varies from 0.51 at 25 °C to 0.18 at 70 °C. Several cells have been assembled with GPE as the electrolyte, zinc as the anode, γ-MnO2 as the cathode and their charge–discharge behaviour followed. Capacity values of 105, 82, 64 and 37 mAh/g of MnO2 have been achieved at 10, 50, 100 and 200 μA/cm2 discharge current densities, respectively. The discharge capacity values are almost constant for about 55 cycles for all values of current densities. Cyclic voltammetric study of MnO2 electrode in Zn/GPE/MnO2 cell clearly shows intercalation/deintercalation of Zn2+.  相似文献   

19.
Titanium dioxide (TiO2) films were prepared on poly(dimethylsiloxane) (PDMS) substrate by direct current (DC) reactive sputtering to change surface physical properties of PDMS. The effects of the changes were investigated by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, water contact angle measurements and protein adsorption tests. Improved wettability and reduced adsorption properties were observed on PDMS surface coated TiO2 films.  相似文献   

20.
In this study, we develop a bactericidal coating material for micro-implant, TiO2 films with Ag deposited on were prepared on titanium plates by sol-gel process. Their anti-microbial properties were analyzed as a function of the annealed temperature using Escherichia coli as a benchmark microorganism. Ag nanoparticles deposited on TiO2 film were of metallic nature and could grow to larger ones when the annealed temperature increased. The results indicated that the smaller size of Ag nanoparticles, the better bactericidal ability. On the other hand, the positive antibacterial effect of TiO2 enhanced the bactericidal effect of Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号