首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a femtosecond optical parametric oscillator based on a periodically poled KTiOPO(4) crystal for which quasi-phase matching is achieved with a 24-microm poling period. The singly resonant parametric oscillator, synchronously pumped by a Ti:sapphire laser at a wavelength of 758 nm, generates a signal at 1200 nm and an idler at 2060 nm. The maximum signal power conversion efficiency of the device is 22% with a pump depletion of 69%. We tune the signal wavelength over a 200-nm band by changing the cavity length. In addition, pump wavelength tuning provides output tunability in the 1000-1235-nm range.  相似文献   

2.
Garashi A  Arie A  Skliar A  Rosenman G 《Optics letters》1998,23(22):1739-1741
We report what is to our knowledge the first demonstration of a continuous-wave optical parametric oscillator (OPO) based on periodically poled KTiOPO(4) . The 10-mm-long flux-grown crystal had a quasi-phase-matched period of 9mum . The pump source was a miniature frequency-doubled Nd:YAG laser, and the threshold power of this doubly resonant device was 51 mW. The OPO was operated near room temperature. The signal and the idler wavelengths could be tuned in the range 1037-1093 nm by variation of the crystal temperature (32-38 degrees C) and the cavity length. Unlike in other nonlinear crystals, green-induced infrared absorption was not observed up to the highest pumping intensity of approximately 4.5kW/cm(2) .  相似文献   

3.
A widely and continuously tunable optical parametric generator (OPG) pumped by a 1064-nm acoustooptically Q-switched diode-end-pumped Nd:YAG laser based on MgO-doped periodically poled LiNbO3 crystal with a multigrating structure (29.2-30.4 μm) is reported.A broad continuous signal spectrum of 1513-1700 nm is obtained by changing the crystal grating periods from 29.2 to 30.4μm and by tuning the crystal temperature from 30 to 180 ℃ simultaneously.When the average pump power is 1.82 W with pulse duration of about 70 ns operating at a repetition rate of 10 kHz,the maximum signal output power of the periodically poled MgO-doped lithium niobate (PPMgLN) OPG is about 210 mW corresponding to the idler and total powers of 118.4 and 328.4 mW respectively.  相似文献   

4.
We report a continuous-wave, doubly resonant optical parametric oscillator (OPO) based on the nonlinear material periodically poled KTiOPO(4) and its application to spectroscopy. The OPO, which is pumped by a diode-pumped frequency-doubled Nd:YLF laser at 523 nm, has a low pump-power threshold of 25 mW and can deliver 10 mW of single-frequency output at 1.65 mum for a pump power of 200 mW. The idler wavelength can be temperature tuned at a rate of 0.73 nm/( degrees )C , and smooth tuning of the output frequency over ~3 GHz is achieved by smooth tuning of the pump laser. We demonstrate the practicality of the OPO by recording the absorption spectrum of methane near 1649 nm.  相似文献   

5.
We present results from what we believe is the first reported example of an optical parametric oscillator based on periodically poled RbTiOAsO(4). The oscillator is pumped by a femtosecond self-mode-locked Ti:sapphire laser and, with a single-grating 2-mm-long crystal and one mirror set, a combination of pump and cavity-length tuning provided wavelength coverage from 1060 to 1225nm (signal) and 2.67 to 4.5 microm (idler). Average output powers were as much as 120mW in the signal and 105mW in the idler and interferometric autocorrelations recorded at signal and idler wavelengths of 1.1 and 3.26 microm, respectively, imply pulse durations of 125 and 115fs, respectively.  相似文献   

6.
S. Y. Diao 《Laser Physics》2009,19(11):2086-2089
An efficient source of all-solid-state broadly tunable mid-infrared optical parametric oscillator based on a periodically poled MgO-doped lithium niobate is reported. The pump source is a 1064nm acousto-optically Q-switched diode-pumped Nd:YAG laser. A broadly tunable mid-infrared output from 1.56 to 1.67 μm were generated, with corresponding idler wavelengths of 3.34 to 2.93 μm by temperature tuning from 40 to 200°C. When the average pump power is 1.61 W with about 70 ns pulse duration operating at a repetition rate of 10 kHz, the maximum signal output power of the PPMgLN-OPO is about 211 mW at 1631 nm.  相似文献   

7.
Conical pumping was used in a periodically poled KTiOPO(4) optical parametric oscillator for singly resonant idler generation in a nearly diffraction-limited axial beam. A single signal-idler pair was generated over the whole tuning range by use of asymmetric reflectivity of the OPO mirrors. Pump depletion of 40% and total conversion efficiency of 27% were obtained. Additional OPO tuning capability was demonstrated by adjustment of the angle of the conical pump beam.  相似文献   

8.
Electric field poling has been employed to fabricate 3-mm-thick periodically poled KTiOPO>(4) crystal for a high-power optical parametric oscillator. The maximum output power of the singly resonant optical parametric oscillator reached 13 mJ with 45% efficiency when the resonator was pumped with a 2.2-mm-diameter beam from a Q-switched Nd:YAG laser. The influence of the cavity design on the spectral and spatial qualities of the output parametric radiation is also discussed.  相似文献   

9.
We report on optical parametric oscillators (OPO's) based on periodically poled RbTiOAsO(4) (PP RTA), which are pumped by Q -switched solid-state lasers. With a diode-pumped Nd:YVO(4) laser (pulse energy, 800microJ ; pulse duration, 5.5 ns; repetition rate, 1 kHz) the PP RTA OPO generated 1.58-microm signal and 3.26-microm idler radiation with a signal pulse energy of 45microJ . The large aperture of 3 mmx3 mm of the PP RTA crystal also permitted OPO operation with pump pulse energies as high as 65 mJ, provided by a flash-lamp-pumped Q -switched Nd:YAG laser (pulse duration, 20 ns; repetition rate, 10 Hz). With this pump source the OPO generated signal pulse energies as high as 17 mJ, corresponding to an efficiency of 26%. The performance of this OPO shows that large-aperture PP RTA crystals are well suited for pulsed nanosecond OPO operation with pump pulse energies of tens of millijoules.  相似文献   

10.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C.  相似文献   

11.
We report, for the first time to our knowledge, high-power femtosecond traveling-wave optical parametric amplification by use of periodically poled KTiOPO(4) . With a single pass through a 4-mm-long sample of 1.23-mm thickness we achieved 40% internal conversion efficiency and 5microJ of single-pulse idler energy near 3.8microm , using only 75microJ of energy from the output of a conventional 1-kHz Ti:sapphire regenerative amplifier. The 210-fs-long idler pulses were almost transform limited. We discuss the specific problems encountered in high-power parametric conversion, such as unwanted quasi-phase-matched upconversion processes for polarization configurations that utilize the largest (d(33)) nonlinear coefficient and the related formation of color centers (gray tracking) in KTiOPO(4) .  相似文献   

12.
We report a continuous-wave optical parametric oscillator (OPO) based on periodically poled RbTiOAsO(4) (PPRTA). The singly resonant OPO, which is located within a Ti:sapphire laser, has a high-finesse signal cavity and delivers a maximum output power of 270 mW to the nonresonant idler wave at 2.92mum , through a 4.5-mm PPRTA crystal. For room-temperature operation and a crystal with a 30-mu;m grating period, pump tuning over 838-848 nm results in OPO tuning over 1.13-1.27mum (signal) and 2.53-3.26mum (idler), limited by the bandwidth of optical coatings. PPRTA exhibits thermal properties superior to those of periodically poled LiNbO(3) .  相似文献   

13.
This paper reports on a high-repetition-rate dual signal-wave (DSW) optical parametric oscillator (OPO) operating at the 1.5 μm band with tunable wavelength intervals from 2.5 nm to 69.1 nm. Two periodically poled crystals, a periodically poled lithium niobate (PPLN) with multiple gratings and a single grating MgO-doped PPLN (PPMgOLN), are cascaded in the same OPO cavity to generate dual signal-waves by using quasi-phase-matched (QPM) technique. The pump source was a Q-switched diode-pumped Nd:YVO4 laser operating at 50 kHz. At an incident pump power of 3 W, an average output power of 169.6 mW at 1489.2 nm and 1558.3 nm has been achieved.  相似文献   

14.
We report a compact quasi-phase-matched optical parametric oscillator (OPO) using periodically poled MgO-doped LiNbO3 with different grating periods. The OPO is pumped by a diode-pumped passively Q-switched Nd:YAG laser providing 4.8-ns pulses at 5.4-kHz repetition rate. The OPO generates signal and idler wavelengths tunable in the ranges of 1.5– and 2.8–, respectively, by changing the crystal temperature between room temperature and . The temperature-dependent Sellmeier equation for the extraordinary refractive index of MgO-doped LiNbO3 is modified in the Mid-IR region, which gives an accurate prediction of the experimental temperature-tuning results. The linewidth of the signal wave is in the range of 0.5–1.0 nm without any controlling element.  相似文献   

15.
We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO(4) that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5microm , and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in ~1-ps pulses were obtained at 33% extraction efficiency.  相似文献   

16.
We present a widely tunable low-threshold chi(3) optical parametric oscillator. The oscillator cavity is formed by butt coupling dichroic mirrors to either end of a highly nonlinear index-guiding photonic crystal fiber. This yields a singly resonant Fabry-Perot oscillator with a high feedback fraction for the resonant parametric sideband. The tuning range of the output parametric sideband stretches from 23 to 164 THz above the pump frequency. The threshold power of the oscillator is only 15 W.  相似文献   

17.
利用周期性极化KTiOPO4晶体构成的连续准相位匹配简并光学参量缩小谐振腔,获得了注入红外的明亮正交振幅压缩光.参量振荡阈值为35 mW.当抽运光功率为20mW时,测得压缩度为2.23dB,特别是当抽运光功率为8mW时,测得压缩度为2.17dB.  相似文献   

18.
An optical parametric gain bandwidth of 115 THz at full-width half maximum is generated from a picosecond Ti:sapphire pumped degenerate optical parametric generator. This ultrabroad bandwidth could be obtained by first identifying the wavelength where the nonlinear optical material has zero group-velocity dispersion (GVD). By pumping at half this wavelength the degenerate signal–idler pairs can accommodate ultrabroad bandwidths. The explanation for this is that the group velocities of the signal and the idlers are approximately matched and the GVD is small. However, in order to thoroughly investigate the degeneracy region around 1700 nm we fabricated several periodically poled KTiOPO4 (PPKTP) crystals with different periods, and also one periodically poled RbTiOPO4 (PPRTP). Both collinear and noncollinear configurations were employed for broadband parametric generation in this region. It was found that the optimum pump wavelength is in the region between 800 nm to 850 nm for PPKTP, and we could also conclude that a similar performance was found for PPRTP. This work will allow the design of optical parametric devices for generating few-cycle pulses in the spectral region between 1.1 μm and 3.8 μm. PACS 42.65.Re; 42.65.Ky; 42.65.-k  相似文献   

19.
We present the experimental observation of pulsed squeezed light from a degenerate optical parametric amplifier pumped by a second harmonic of a continuous-wave mode-locked Nd:YVO4 laser. With a single pass through a 10 mm long periodically poled KTiOPO4 crystal, the classical parametric gain of 11 is observed. The measured noise reduction in the quiet quadrature is 3.2 dB below the shot-noise level.  相似文献   

20.
A high-power picosecond optical parametric oscillator (OPO) based on a 47-mm periodically poled lithium niobate crystal is described. More than 12 W of total average power-almost 8 W of signal power at 1.85 microm and more than 4 W of idler radiation at 2.5 microm -is simultaneously extracted from less than 18 W of average pump power. The OPO is synchronously pumped by 80-ps (FWHM) cw mode-locked pulses at 1.064 microm , and its output is tunable from 1.7 to 2.84microm . Nearly transform-limited signal pulses are obtained following the introduction of two intracavity etalons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号