首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C−H and C−Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C−H and C−Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C−H, C−N, C−S, and C−O borylation transformations and provides insights to where further developments are required.  相似文献   

2.
Large polycyclic aromatic hydrocarbons (PAHs) containing pentagons represent an important class of compounds that are considered to be superior materials in future nano-electronic applications. From this perspective, the development of synthetic approaches to large PAHs and nanographenes (NGs) is a matter of great importance. In this context indenoannulation appears to be the most practical way to introduce pentagons into NGs. Here we report that alumina-mediated C−F bond activation is an attractive tool for the synthesis of non-alternant NGs bearing several pentagons. The unique nature of the reaction leads to a rather counter-intuitive outcome and allows considering each previous aryl–aryl coupling as a promoter of the following one, despite the continuous increase in the strain energy. Thus, the presented strategy combines both facile synthesis and significant yields for large nonalternant PAHs and NGs.  相似文献   

3.
The unique nature of the alumina-mediated cyclodehydrofluorination gives the opportunity to execute the preprogrammed algorithm of the C−C couplings rationally built into a precursor. Such multi-assemblies facilitate the construction of the carbon-skeleton, superseding the conventional step-by-step by the one-pot intramolecular assembly. In this work, the feasibility of the alumina-mediated C−F bond activation approach for multi-assembly is demonstrated on the example of a fundamental bowl-shaped polycyclic aromatic hydrocarbon (diindenochrysene) through the formation of all “missing” C−C bonds at the last step. Beside valuable insights into the reaction mechanism and the design of the precursors, a facile pathway enabling the two-step synthesis of diindenochrysene was elaborated, in which five C−C bonds form in a single synthetic step. It is shown that the relative positions of fluorine atoms play a crucial role in the outcome of the assembly and that governing the substituent positions enables the design of effective precursor molecules “programmed” for the consecutive C−C bond formations. In general, these findings push the state of the field towards the facile synthesis of sophisticated bowl-shaped carbon-based nanostructures through multi-assembly of fluoroarenes.  相似文献   

4.
We report the first direct catalytic method for formyl-selective deuterium labeling of aromatic aldehydes under mild conditions, using an iridium-based catalyst designed to favor formyl over aromatic C−H activation. A good range of aromatic aldehydes is selectively labeled, and a one-pot labeling/olefination method is also described. Computational studies support kinetic product control over competing aromatic labeling and decarbonylation pathways.  相似文献   

5.
Palladium-catalyzed base-selective annulation of dibromonaphthalimide to different aryl boronate esters by combined Suzuki–Miyaura cross-coupling and direct C−H arylation afforded a series of new five- and six-membered ring annulated electron-poor polycyclic aromatic hydrocarbons. Cesium carbonate (Cs2CO3) as auxiliary base in these C−C coupling cascade reactions led exclusively to six-membered ring annulation, while the use of organic base diazabicycloundecene (DBU) afforded the corresponding five-membered ring annulated products. This base-dependent selective mode of annulation is attributed to different mechanistic pathways directed by the applied base. The selective annulation was revealed by single crystal X-ray analysis of the respective five- and six-membered ring annulated products. The optical and redox properties of the new polycyclic aromatic dicarboximides were characterized by UV/Vis absorption and fluorescence spectroscopy and cyclic voltammetry.  相似文献   

6.
A method for the palladium/copper-catalyzed direct acylation of azoles with acyl fluorides is described. This study reports the first examples of acyl fluorides being used as acylation reagents in transition-metal-catalyzed aromatic C−H bond functionalization reactions. Depending on the reaction temperature, decarbonylative coupling may also occur. Mechanistic studies suggest that the cleavage of the aromatic C−H bond, promoted by a copper-phosphine species, is not the rate-limiting step of this acylation.  相似文献   

7.
An efficient synthetic method of aromatic ketones through C−F cleavage of trifluoromethyl group is disclosed. The high functional group tolerance of the transformation and the remarkable stability of trifluoromethyl group in various reactions enabled multi-substituted aromatic ketone synthesis in an efficient route involving useful transformations such as ortho-lithiation, aryne chemistry, and cross-couplings.  相似文献   

8.
The fabrication of advanced graphene-based nanocomposites with high-performance polymers requires covalent modification of graphene with aromatic macromolecules. Herein, C−N coupling reactions between fluorinated graphene (FG) and aromatic polyamides containing the benzimidazole moiety are successfully achieved. The optimized conditions are presented based on the nucleophilic behavior of the C−N coupling reaction on graphene. Different from the C−N coupling reaction between two small aromatic molecules, the conformation of grafted aromatic polyamide after reaction changes from torsional to paralleled alignment on graphene with the molecular length increment. Non-covalent interactions between graphene and aromatic polyamides result in this conformational change owing to the extended π systems of graphene and aromatic polyamides, and the synergistic effect of covalent and non-covalent interactions is put forward. As a consequence, graphene dispersibility is greatly enhanced in the solution of aromatic polyamide.  相似文献   

9.
Electrochemical approaches to form C(sp2)−C(sp3) bonds have focused on coupling C(sp3) electrophiles that form stabilized carbon-centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp3) coupling partners owing to their availability and cost-effectiveness, their tendency to undergo radical-radical homocoupling makes them challenging substrates for electroreductive cross-coupling. Herein, we disclose a metal-free regioselective cross-coupling of 1,4-dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4-dicyanobenzene radical anions, leading to negligible homocoupling and high cross-selectivity to form 1,4-alkyl cyanobenzenes. The cross-coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp3) precursors.  相似文献   

10.
The coupling of aromatic electrophiles (aryl halides, aryl ethers, aryl acids, aryl nitriles etc.) with nucleophiles is a core methodology for the synthesis of aryl compounds. Transformations of aryl ketones in an analogous manner via carbon–carbon bond activation could greatly expand the toolbox for the synthesis of aryl compounds due to the abundance of aryl ketones. An exploratory study of this approach is typically based on carbon–carbon cleavage triggered by ring-strain release and chelation assistance, and the products are also limited to a specific structural motif. Here we report a ligand-promoted β-carbon elimination strategy to activate the carbon–carbon bonds, which results in a range of transformations of aryl ketones, leading to useful aryl borates, and also to biaryls, aryl nitriles, and aryl alkenes. The use of a pyridine-oxazoline ligand is crucial for this catalytic transformation. A gram-scale borylation reaction of an aryl ketone via a simple one-pot operation is reported. The potential utility of this strategy is also demonstrated by the late-stage diversification of drug molecules probenecid, adapalene, and desoxyestrone, the fragrance tonalid as well as the natural product apocynin.  相似文献   

11.
In this work, a photocatalytic strategy for a rapid and modular access to polycyclic indolones starting from readily available indoles is reported. This strategy relies on the use of redox-active esters in combination with an iridium-based photocatalyst under visible-light irradiation. The generation of alkyl radicals through decarboxylative single electron reductions enables intramolecular homolytic aromatic substitutions with a pending indole moiety to afford pyrrolo- and pyridoindolone derivatives under mild conditions. Furthermore, it was demonstrated that these radicals could also be engaged into cascades consisting of an intermolecular Giese-type addition followed by an intramolecular homolytic aromatic substitution to rapidly assemble valuable azepinoindolones.  相似文献   

12.
The synthesis of trifluoromethylselenolated aromatic molecules via an auxiliary-assisted, palladium catalyzed, C−H bonds functionalization with trifluoromethyl tolueneselenosulfonate as reagent is described. The mono- or bis-products can be preferentially formed. Some mechanistic investigations were realized to better understand the reaction. This methodology was also extended to fluoroalkylselenyl groups.  相似文献   

13.
Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N-bound ligands have been prepared and fully characterized for the first time. By replacing CO and H as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α-alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts.  相似文献   

14.
The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high-performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X-ray analyses, we discovered that UV-irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C−C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox.  相似文献   

15.
Tri- and tetra-fluorinated [7]helicenes are photolabile and undergo a double fluorine atom transfer. Herein, we show that the transferred product further undergoes a skeletal transformation on silica gel. The transformation begins with activation of the allylic C−F bond on the silanol surface. Then, the resulting carbocation readily undergoes a regioselective nucleophilic aromatic substitution with water, depending on the position of the fluorine substituents. Hexafluoro-2-propanol also activated the allylic C−F bond and acted as a nucleophile. These findings support the generation of a highly reactive cationic electrophilic intermediate in the successive transformations involving fluorine atoms.  相似文献   

16.
Iridium(I) N-heterocyclic carbene complexes of formula Ir(κ2O,O’-BHetA)(IPr)(η2-coe) [BHetA=bis-heteroatomic acidato, acetylacetonate or acetate; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-carbene; coe=cyclooctene] have been prepared by treating Ir(κ2O,O’-BHetA)(η2-coe)2 complexes with IPr. These complexes react with 2-vinylpyridine to afford the hydrido-iridium(III)-alkenyl cyclometalated derivatives IrH(κ2O,O’-BHetA)(κ2N,C-C7H6N)(IPr) through the iridium(I) intermediate Ir(κ2O,O’-BHetA)(IPr)(η2-C7H7N). The cyclometalated IrH(κ2O,O’-acac)(κ2N,C–C7H6N)(IPr) complex efficiently catalyzes the hydroalkenylation of aromatic and aliphatic terminal alkynes and enynes with 2-vinylpyridine to afford 2-(4R-butadienyl)pyridines with Z,E configuration as the major reaction products (yield up to 89 %). In addition, unprecedented (Z)-2-butadienyl-5R-pyridine derivatives have been obtained as minor reaction products (yield up to 21 %) from the elusive 1Z,3gem-butadienyl hydroalkenylation products. These compounds undergo a thermal 6π-electrocyclization to afford bicyclic 4H-quinolizine derivatives that, under catalytic reaction conditions, tautomerize to 6H-quinolizine to afford the (Z)-2-(butadienyl)-5R-pyridine by a retro-electrocyclization reaction.  相似文献   

17.
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper- and palladium-mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel-mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3). The strategy relies on PMe3-promoted oxidative addition and transmetalation, and CCl3CN-induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.  相似文献   

18.
A metal-free C−H allylation strategy is described to access diverse functionalized ortho-allyl-iodoarenes. The method employs hypervalent (diacetoxy)iodoarenes and proceeds through the iodane-guided “iodonio-Claisen” allyl transfer. The use of allylsilanes bearing electron-withdrawing functional groups unlocks the functionalization of a broad range of substrates, including electron-neutral and electron-poor rings. The resulting ortho-allylated iodoarenes are versatile building blocks, with examples of downstream transformation including a concise synthesis of the experimental antimitotic core of Dosabulin. DFT calculations shed additional light on the reaction mechanism, with notable aspects including the aromatic character of the transition-state structure for the [3,3] sigmatropic rearrangement, as well as the highly stereoconvergent nature of the trans-product formation.  相似文献   

19.
An efficient Suzuki-Miyaura cross-coupling reaction of ortho-phenoxy-substituted aromatic amides with aryl boronates is described. The use of LiOtBu is crucial for the success of the reaction. An amidate anion, which is formed through deprotonation of the amide NH bond by LiOtBu, functions as a directing group to activate a C−O bond.  相似文献   

20.
Herein, we report a radical borylation of aromatic amines through a homolytic C(sp2)−N bond cleavage. This method capitalizes on a simple and mild activation via a pyrylium reagent (ScPyry-OTf) thus priming the amino group for reactivity. The combination of terpyridine and a diboron reagent triggers a radical reaction which cleaves the C(sp2)−N bond and forges a new C(sp2)−B bond. The unique non-planar structure of the pyridinium intermediate, provides the necessary driving force for the aryl radical formation. The method permits borylation of a wide variety of aromatic amines indistinctively of the electronic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号