首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discovering new functional genes, designing perfect crystal structures, and developing high-performance materials are the goals being pursued by scientists. Herein, the first antimony pyrophosphate, K2Sb(P2O7)F, possessing an optimal layered structure, is reported, where the perfect structural arrangement induces excellent optical properties. K2Sb(P2O7)F not only displays a sharply enhanced birefringence (0.157@546 nm) compared to the existing phosphate optical materials, but also exhibits a strong second-harmonic generation response (4.0×KDP). Remarkably, a new bifunctional gene, the square-pyramidal SbO4F group, was discovered, and a unique two-dimensional arrangement of Cairo pentagonal tiling units was observed in inorganic compounds for the first time.  相似文献   

2.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3? with organic C(NH2)3+ trigonal units and BeO3F with SO3F? tetrahedra. Therefore, C(NH2)3SO3F is a metal‐free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase‐matching wavelengths can reach 200 nm. These findings highlight the exploration of metal‐free compounds as nontoxic and low‐cost UV NLO materials as a new research area.  相似文献   

3.
4.
5.
6.
A new chemical and structural interpretation of K5Ce2(SO4)6·H2O ( I ) and a redetermination of the structure of K2Ce(SO4)3·H2O ( II ) is presented. The mixed‐valent compound I crystallizes in the space group C2/c with a = 17.7321(3), b = 7.0599(1), c = 19.4628(4) Å, β = 112.373(1)° and Z = 4. Compound I has been discussed earlier with space group Cc. In the structure of I , there are pairs of edge sharing cerium polyhedra connected by sulfate oxygen atoms in the μ3 bonding mode. These cerium dimers are linked through edge and corner sharing sulfate bridges, forming layers. The layers are joined by potassium ions which together with the water molecules are placed between the layers. No irregularity in the distribution of the CeIII and CeIV to cause the lost of a crystallographic center of symmetry was detected. We suggest that the charge exerted by the extra f1 electron for every cerium dimer is delocalized over the Ce1–O2–Ce2 moiety in a non‐bonding mode. As a result, the oxidations state of each cerium ion is a mean value between III and IV at each atomic position. Compound II crystallizes in the space group C2 with a = 20.6149(2), b = 7.0742(1), c = 17.8570(1) Å, β = 122.720(1)° and Z = 8. The hydrogen atoms have been located and the absolute structure has been established. Neither hydrogen atom positions nor anisotropic displacement parameters were given in the previous reports. In compound II , the cerium polyhedra are connected by edge and corner sharing sulfate groups forming a three‐dimensional network. This network contains Z‐shaped channels hosting the charge compensating potassium ions.  相似文献   

7.
Two new selenides with diamond‐like structures, Li7Cd4.5Ge4Se16 and Li6.4Cd4.8Sn4Se16, were synthesized by using a conventional high‐temperature solid‐state reaction method. They crystallize in the space group Pna21 (no. 33) of the orthorhombic system. Their three‐dimensional frameworks consist of corner‐sharing LiSe4, CdSe4, and MSe4 (M=Ge, Sn) tetrahedra. These two compounds exhibit strong powder second‐harmonic generation responses that are about 1.2 and 2.5 times that of the benchmark AgGaS2 at a laser wavelength of λ=2.09 μm, and also demonstrate type I phase‐matchable behavior. The optical bandgaps were determined to be 2.18 and 1.95 eV for Li7Cd4.5Ge4Se16 and Li6.4Cd4.8Sn4Se16, respectively. Furthermore, these two materials exhibit congruent melting behavior at rather low temperatures of 985 and 1060 K, respectively, which makes bulk single crystal growth by using the Bridgman–Stockbarger method possible. Our study indicates that these two materials show advantages over the traditional IR NLO material CdSe and are promising for practical applications.  相似文献   

8.
9.
The search of new borates with improved functional properties has attracted considerable attention. Herein, a new polar fluorooxoborate, NaB4O6F (NBF) was prepared by high‐temperature solid‐state reaction. NBF belongs to the AB4O6F family (A=alkali metal or ammonium), a series of compounds that undergoes significant cation‐dependent structural changes. NBF is of particular interest owing to the special cation position. Temperature‐dependent ionic conductivity measurements show that NBF is a solid ionic conductor, and it has the lowest active energy of 32.5 kJ mol?1 of fluorooxoborates. NBF also shows a second‐harmonic generation (SHG) response of 0.9×KH2PO4 and 0.2×β‐BaB2O4, at 1064 and 532 nm, respectively, and it has a short UV cutoff edge below 180 nm. Based on bond valence (BV) concepts, symmetry analysis, and the first principles calculation, the unique [B4O6F] layer can be regarded as the “multifunctional unit”, which is responsible for the observed properties of NBF.  相似文献   

10.
H Fei  CS Han  SR Oliver 《Inorganic chemistry》2012,51(16):8655-8657
An extended metal oxide possessing a cationic charge on the host has been synthesized by hydrothermal methods. The structure consists of 1D antimony oxide [Sb(6)O(7)](4+) chains with a new structural motif of four Sb atoms wide and unprotonated sulfate anions between the chains. The material was characterized by powder and single-crystal X-ray diffraction. Thermal behavior and chemical resistance in aqueous acidic conditions (pH ~2) indicate a highly stable cationic material. The stability is attributed to the entirely inorganic composition of the structure, where 1D covalently extended chains are electrostatically bound to divalent anions.  相似文献   

11.
12.
Four sodium-based ternary IR nonlinear optical (NLO) materials, Na6MQ4 (M=Zn, Cd; Q=S, Se), were prepared through a high-temperature flux method. The crystal structure of the compounds is built up of isolated [MQ4] tetrahedra and a 3D framework formed by the NaQn (n=4, 5) units. The two selenides, Na6MSe4 (M=Zn, Cd), as promising IR NLO materials, show moderate second-harmonic generation (SHG) responses (0.9 and 0.5×AgGaS2) with good phase-matching behavior, as well as high laser damage thresholds (2 and 1.9×AgGaS2). The two sulfides, Na6MS4 (M=Zn, Cd), exhibit higher laser damage thresholds (13 and 4×AgGaS2), but smaller SHG responses (0.3 and 0.2×AgGaS2). Theoretical calculations and statistical analyses indicate that the SHG effect and band gap in the compounds originate mainly from the distorted NaQ4 NLO-active units with a short Na−S bond length, which provides a new insight into the design of novel IR NLO materials.  相似文献   

13.
《化学:亚洲杂志》2017,12(24):3172-3177
A new selenide with a diamond‐like structure, Li2MnSnSe4, was synthesized for the first time by using a conventional high‐temperature solid‐state reaction method. Li2MnSnSe4 crystallizes in the space group Pmn 21 (no. 31) of the orthorhombic system. Its three‐dimensional framework is constructed by corner‐sharing LiSe4, MnSe4, and SnSe4 tetrahedra. The title compound has been discovered to have both type I phase‐matchable behavior and to exhibit moderate powder second‐harmonic generation intensity, about 0.5 times that of commercial AgGaS2 in the particle size of 200–250 μm at a laser radiation of 2.09 μm. In addition, Li2MnSnSe4 exhibits congruent melting behavior, which makes the bulk single‐crystal growth by the Bridgman–Stockbarger method possible. The temperature‐dependent susceptibility measurement indicates an antiferromagnetic interaction with a Néel temperature (T N) of 8.6 K for this compound.  相似文献   

14.
15.
The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep‐ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB4O6F (CBF), which combines the superior structural properties of two well‐known NLO materials, β‐BaB2O4 (BBO) and KBe2BO3F2 (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (≈1.9×KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and shows an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials.  相似文献   

16.
Benzodithiazolium Chlorooxomolybdate(V): Preparation and Crystal Structure of (C6H4NS2)[MoOCl4] and (C6H4NS2)[MoOCl4·H2O] Red benzo‐1,3,2‐dithiazolium‐chlorooxomolybdate(V) (C6H4NS2)[MoOCl4] ( 1 ) was obtained by the reaction of benzo‐1,3,2‐dithiazoliumchloride and molybdenum(V)chloride oxide in dichlormethane under solvothermal conditions at 70 °C. In the presence of small amounts of concentrated hydrochloric acid the yellow compound (C6H4NS2)[MoOCl4·H2O] ( 2 ) is formed under analogue conditions. Both crystal structures ( 1 : monoclinic, C2/c, a = 799.2(1), b = 2091.5(2), c = 791.5(1) pm, β = 102.2(1)°, Z = 4; 2 : monoclinic, Cc, a = 953.7(1), b = 2468.9(3), c = 608.1(1) pm, β = 112.5(1)°, Z = 4) contain the planar benzo‐1,3,2‐dithiazolium ion. Within the structure of 1 the molybdenum atoms in the [MoOCl4]? ions are coordinated in a square pyramidal fashion with an oxygen atom in apical position and the basal plane formed by chlorine atoms. The nitrogen atom of the cation, which bears a partial negativ charge, expands the coordination to a distorted octahedron. The structure therefore is made up of ionic pairs {(C6H4NS2)+ [MoOCl4]?} with a Mo–N distance of 266 pm. 1 is paramagnetic with a magnetic moment of 1.7 B.M. corresponding to one unpaired electron per formula unit. In the structure of 2 the coordination of the [MoOCl4]? ion is expanded by the oxygen atom of a coordinating water molecule. The structure is dominated by hydrogen bonds between the oxygen atoms of the [MoOCl4·H2O]? ions which cause the concatenation of the anions to infinite chains.  相似文献   

17.
A novel noncentrosymmetric (NCS) polar fluoride sulfate, CsSbF2SO4, was obtained by ionothermal synthesis. A meticulously designed co‐substitution approach was used to successfully replace the [TiO6]8? and [PO4]3? functional groups in KTiOPO4 (KTP) with [SbO4F2]7? and [SO4]2? units, respectively. The structure of CsSbF2SO4 features a pseudo‐3D framework consisting of interconnected 1D [SbF2O2SO4]5? chains of corner‐sharing [SbO4F2]7? octahedra and [SO4]2? tetrahedra. The title compound exhibits a sharply enlarged band gap compared to its parent compound, KTP, benefitting from the introduction of F? ions and the displacement of Sb3+ cations. Second harmonic generation (SHG) measurements manifested that CsSbF2SO4 is phase‐matchable and revealed a strong SHG response of about 3.0 KH2PO4 (KDP), which is the highest value reported for any metal sulfate reported to date. The reported fluoride sulfate is a promising near ultraviolet (UV) nonlinear optical (NLO) material.  相似文献   

18.
The ionic liquid 1‐butyl‐3‐methylimidazolium hydrogensulfate, [bmim]HSO4, turned out to be resistant even to strong oxidizers like SO3. Thus, it should be a suitable solvent for the preparation of polysulfates at low temperatures. As a proof of principle we here present the synthesis and crystal structure of K2(S2O7)(H2SO4), which has been obtained from the reaction of K2SO4 and SO3 in [bmim]HSO4. In the crystal structure of K2(S2O7)(H2SO4) (orthorhombic, Pbca, Z = 8, a = 810.64(2) pm, b = 1047.90(2) pm, c = 2328.86(6) pm, V = 1978.30(8) Å3) two crystallographically unique potassium cations are coordinated by a different number of monodentate and bidentate‐chelating disulfate anions as well as by sulfuric acid molecules. The crystal structure consists of alternating layers of [K2(S2O7)] slabs and H2SO4 molecules. Hydrogen bonds between hydrogen atoms of sulfuric acid molecules and oxygen atoms of the neighboring disulfate anions are observed.  相似文献   

19.
本文报道了一个多酸簇合物[Cu4(PPh3)6][Mo8O26]的合成、X-射线单晶结构分析及IR、XRD表征.单品结构表明中心对称的[Mo8O26]4-是由8个共边的MoO6八面体组成.该化合物具有较好的三阶非线性光学性质,其三阶非线性吸收和折射系数分别为12.9×10-11 MKS和3.13×10-11 esu.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号