首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xinyi Zhao  Dr. Fei Xu 《Chemphyschem》2023,24(16):e202300333
Rechargeable magnesium batteries (RMBs) attract research interest owing to the low cost and high reliability, but the design of cathode materials is the major difficulty of their development. The bivalent magnesium cation suffers from a strong interaction with the anion and is difficult to intercalate into traditional magnesium intercalation cathodes. Herein, an amorphous molybdenum polysulfide (a-MoSx) is synthesized via a simple one-step solvothermal reaction and used as the cathode material for RMBs. The a-MoSx cathode provides a high capacity (185 mAh g−1) and a good rate performance (50 mAh g−1 at 1000 mA g−1), which are much superior compared with crystalline MoS2 and demonstrate the privilege of amorphous RMB cathodes. A mechanism study demonstrates both of molybdenum and sulfur undergo redox reactions and contribute to the capacity. Further optimizations indicate low-temperature synthesis would favor the magnesium storage performance of a-MoSx.  相似文献   

2.
Porous core–shell CuCo2S4 nanospheres that exhibit a large specific surface area, sufficient inner space, and a nanoporous shell were synthesized through a facile solvothermal method. The diameter of the core–shell CuCo2S4 nanospheres is approximately 800 nm„ the radius of the core is about 265 nm and the thickness of the shell are approximately 45 nm, respectively. On the basis of the experimental results, the formation mechanism of the core–shell structure is also discussed. These CuCo2S4 nanospheres show excellent Li storage performance when used as anode material for lithium-ion batteries. This material delivers high reversible capacity of 773.7 mA h g−1 after 1000 cycles at a current density of 1 A g−1 and displays a stable capacity of 358.4 mA h g−1 after 1000 cycles even at a higher current density of 10 A g−1. The excellent Li storage performance, in terms of high reversible capacity, cycling performance, and rate capability, can be attributed to the synergistic effects of both the core and shell during Li+ ion insertion/extraction processes.  相似文献   

3.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi-electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single-electron transfer, which are not ideal for multivalent-ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope-like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two-electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g−1 at a current density of 100 mA g−1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg−1 for RMBs and >500 Wh kg−1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

4.
Rechargeable Mg batteries (RMBs) are advantageous large-scale energy-storage devices because of the high abundance and high safety, but exploring high-performance cathodes remains the largest difficulty for their development. Compared with oxides and sulfides, selenides show better Mg-storage performance because the weaker interaction with the Mg2+ cation favors fast kinetics. Herein, nanorod-like FeSe2 was synthesized and investigated as a cathode for RMBs. Compared with microspheres and microparticles, nanorods exhibit higher capacity and better rate capability with a smaller particle size. The FeSe2 nanorods show a high capacity of 191 mAh g−1 at 50 mA g−1 and a good rate performance of 39 mAh g−1 at 1000 mA g−1. Ex situ characterizations demonstrate the Mg2+ intercalation mechanism for FeSe2, and a slight conversion reaction occurs on the surface of the particles. The capacity fading is mainly because of the dissolution of Fe2+, which is caused by the reaction between Fe2+ and Cl of the electrolyte during the charge process on the surface of the particles. The surface of FeSe2 is mainly selenium after long cycling, which may also dissolve in the electrolyte during cycling. The present work develops a new type of Mg2+ intercalation cathode for RMBs. More importantly, the fading mechanism revealed herein has considered the specificity of Mg battery electrolyte and would assist a better understanding of selenide cathodes for RMBs.  相似文献   

5.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g?1 at a current density of 100 mA g?1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg?1 for RMBs and >500 Wh kg?1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

6.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   

7.
A new family of sulfur‐rich phosphorus sulfide molecules (P4S10+n ) and their electrochemical reaction mechanism with metallic Li has been explored. These P4S10+n molecules are synthesized by the reaction between P4S10 and S. For Li batteries, the P4S40 molecule in the series of P4S10+n molecules provides the highest capacity, which has a first discharge capacity of 1223 mAh g−1 at 100 mA g−1 and stabilizes at approximately 720 mAh g−1 at 500 mA g−1 after 100 cycles. This new class of sulfur‐rich P4S10+n molecules and its electrochemical behavior for room‐temperature Li+ storage could provide novel insights for phosphorus sulfide molecules and high‐energy batteries.  相似文献   

8.
Owing to their high specific capacity and abundant reserve, CuxS compounds are promising electrode materials for lithium-ion batteries (LIBs). Carbon compositing could stabilize the CuxS structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co-precipitation and thermal reduction with polyelectrolytes. High-temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X-ray absorption spectroscopy. The N-doped carbon-composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long-term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple-scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage.  相似文献   

9.
Metal–organic framework‐derived NiCo2.5S4 microrods wrapped in reduced graphene oxide (NCS@RGO) were synthesized for potassium‐ion storage. Upon coordination with organic potassium salts, NCS@RGO exhibits an ultrahigh initial reversible specific capacity (602 mAh g?1 at 50 mA g?1) and ultralong cycle life (a reversible specific capacity of 495 mAh g?1 at 200 mA g?1 after 1 900 cycles over 314 days). Furthermore, the battery demonstrates a high initial Coulombic efficiency of 78 %, outperforming most sulfides reported previously. Advanced ex situ characterization techniques, including atomic force microscopy, were used for evaluation and the results indicate that the organic potassium salt‐containing electrolyte helps to form thin and robust solid electrolyte interphase layers, which reduce the formation of byproducts during the potassiation–depotassiation process and enhance the mechanical stability of electrodes. The excellent conductivity of the RGO in the composites, and the robust interface between the electrodes and electrolytes, imbue the electrode with useful properties; including, ultrafast potassium‐ion storage with a reversible specific capacity of 402 mAh g?1 even at 2 A g?1.  相似文献   

10.
Sodium molybdate (Na−Mo−O) wrapped by graphene oxide (GO) composites have been prepared via a simple in-situ precipitation method at room temperature. The composites are mainly constructed with one dimension (1D) ultra-long sodium molybdate nanorods, which are wrapped by the flexible GO. The introduction of GO is expected to not merely provide more active sites for lithium-ions storage, but also improve the charge transfer rate of the electrode. The testing electrochemical performances corroborated the standpoint: The Na−Mo−O/GO composites delivers specific capacities of 718 mAh g−1 after 100 cycles at 100 mA g−1, and 570 mAh g−1 after 500 cycles at a high rate of 500 mA g−1; for comparison, the bare Na−Mo−O nanorod shows a severe capacity decay, which deliver only 332 mAh g−1 after 100 cycles at 100 mA g−1. In view of the cost-efficient and less time-consuming in synthesis, and one-step preparation without further treatment, these Na−Mo−O nanorods/GO composites present potential and prospective anodes for LIBs.  相似文献   

11.
Lithium–sulfur (Li–S) batteries are considered to be one of the most promising energy storage systems owing to their high energy density and low cost. However, their wide application is still limited by the rapid capacity fading. Herein, polydopamine (PDA)-coated N-doped hierarchical porous carbon spheres (NPC@PDA) are reported as sulfur hosts for high-performance Li-S batteries. The NPC core with abundant and interconnected pores provides fast electron/ion transport pathways and strong trapping ability towards lithium polysulfide intermediates. The PDA shell could further suppress the loss of lithium polysulfide intermediates through polar–polar interactions. Benefiting from the dual function design, the NPC/S@PDA composite cathode exhibits an initial capacity of 1331 mAh g−1 and remains at 720 mAh g−1 after 200 cycles at 0.5 C. At the pouch cell level with a high sulfur mass loading, the NPC/S@PDA composite cathode still exhibits a high capacity of 1062 mAh g−1 at a current density of 0.4 mA cm−2.  相似文献   

12.
Lithium-sulfur batteries are promising secondary energy storage devices that are mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe2 nanoparticles (CoSe2-PNC) is developed as a cathode for lithium-sulfur battery. A combination of CoSe2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g−1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g−1 thus corresponding to a capacity retention of 75.97 %. In a long-term cycling test, discharge specific capacity of 546.7 mAh g−1 was observed after 300 cycles performed at a current density of 1 C.  相似文献   

13.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

14.
Transition metal oxides have vastly limited practical application as electrode materials for lithium-ion batteries (LIBs) due to their rapid capacity decay. Here, a versatile strategy to mitigate the volume expansion and low conductivity of Fe3O4 by coating a thin carbon layer on the surface of Fe3O4 nanosheets (NSs) was employed. Owing to the 2D core–shell structure, the Fe3O4@C NSs exhibit significantly improved rate performance and cycle capability compared with bare Fe3O4 NSs. After 200 cycles, the discharge capacity at 0.5 A g−1 was 963 mA h g−1 (93 % retained). Moreover, the reaction mechanism of lithium storage was studied in detail by ex situ XRD and HRTEM. When coupled with a commercial LiFePO4 cathode, the resulting full cell retains a capacity of 133 mA h g−1 after 100 cycles at 0.1 A g−1, which demonstrates its superior energy storage performance. This work provides guidance for constructing 2D metal oxide/carbon composites with high performance and low cost for the field of energy storage.  相似文献   

15.
Transition metal sulfides have emerged as promising materials in supercapacitor. In this work, we firstly developed an interface-induced superassembly approach to fabricate NiSx and CoSx nanoparticles, which based on ordered mesoporous carbon-graphene aerogel composites for supercapacitor electrodes. The obtained multi-component superassembled nanoparticles-carbon matrix composites have controllable 3D porous structure of multi-stage composite. The two-dimensional graphene interlaced to form a 3D framework with large sponge-like pores, and then the graphene surface was loaded with mesoporous carbon with mesoporous pore size and vertical orientation. The composites display high specific capacitance of 958.1 F g−1 at 0.1 A g−1. The capacitance retains about 97.3 % after 3000 charging-discharging cycles at 2 A g−1. These results indicate that the obtained OMC−GA−Ni3S2/Co4S3 is a promising material for electrochemical capacitors, which providing new technical methods and ideas for the research of new energy and analytical sensor materials in the fields of energy storage, photocatalysis, point-of-care testing devices and other fields.  相似文献   

16.
The design of electrode materials with rational core/shell structures is promising for improving the electrochemical properties of supercapacitors. Hence, hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam were fabricated by a simple hydrothermal method. Owing to their structure and synergistic effect, they deliver an excellent specific capacitance of 2393 F g−1 at 1 A g−1 and long cycle lifespan as positive electrode materials. An asymmetric supercapacitor device with FeCo2S4@FeNi2S4 as positive electrode and graphene as negative electrode exhibited a specific capacitance of 133.2 F g−1 at 1 A g−1 and a high energy density of 47.37 W h kg−1 at a power density of 800 W kg−1. Moreover, the device showed remarkable cycling stability with 87.0 % specific-capacitance retention after 5000 cycles at 2 A g−1. These results demonstrate that the hierarchical FeCo2S4@FeNi2S4 core/shell structures have great potential in the field of electrochemical energy storage.  相似文献   

17.
An amidation-dominated re-assembly strategy is developed to prepare uniform single atom Ni/S/C nanotubes. In this re-assembly process, a single-atom design and nano-structured engineering are realized simultaneously. Both the NiO5 single-atom active centers and nanotube framework endow the Ni/S/C ternary composite with accelerated reaction kinetics for potassium-ion storage. Theoretical calculations and electrochemical studies prove that the atomically dispersed Ni could enhance the convention kinetics and decrease the decomposition energy barrier of the chemically-absorbed small-molecule sulfur in Ni/S/C nanotubes, thus lowering the electrode reaction overpotential and resistance remarkably. The mechanically stable nanotube framework could well accommodate the volume variation during potassiation/depotassiation process. As a result, a high K-storage capacity of 608 mAh g−1 at 100 mA g−1 and stable cycling capacity of 330.6 mAh g−1 at 1000 mA g−1 after 500 cycles are achieved.  相似文献   

18.
Heterostructure engineering of electrode materials, which is expected to accelerate the ion/electron transport rates driven by a built‐in internal electric field at the heterointerface, offers unprecedented promise in improving their cycling stability and rate performance. Herein, carbon nanotubes with Co9S8/ZnS heterostructures embedded in a N‐doped carbon framework (Co9S8/ZnS@NC) have been rationally designed via an in‐situ vapor chemical transformation strategy with the aid of thiophene, which not only acted as carbon source for the growth of carbon nanotubes but also as sulfur source for the sulfurization of metal Zn and Co. Density functional theory (DFT) calculation shows an about 3.24 eV electrostatic potential difference between ZnS and Co9S8, which results in a strong electrostatic field across the interface that makes electrons transfer from Co9S8 to the ZnS side. As expected, a stable cycling performance with reversible capacity of 411.2 mAh g?1 at 1000 mA g?1 after 300 cycles, excellent rate capability (324 mAh g?1 at 2000 A g?1) and a high percentage of pseudocapacitance contribution (87.5% at 2.2 mv/s) for lithium‐ion batteries (LIBs) are achieved. This work provides a possible strategy for designing multicomponent heterostructural materials for application in energy storage and conversion fields.  相似文献   

19.
The behavior of electron transfer and ion transport plays a significant role in the electrocatalytic activity. However, the improvement of CuCo2S4 electrocatalytic activity has been a difficult problem owing to lack of effective electron transfer and ion transport. Herein, the unique structure connected CuCo2S4 nanosheets and carbon cloth (CC) with Fe2O3 nanoparticles to form CuCo2S4/Fe2O3/CC. Compared with CuCo2S4/CC, the resistances of electron transfer and ion transport were decreased by 65 and 84 %, respectively. The electrochemical surface area of CuCo2S4/Fe2O3/CC was 2.76 times larger than that of CuCo2S4/CC due to the high double-layer capacitance. For the oxygen evolution reaction, CuCo2S4/Fe2O3/CC could achieve an overpotential of 273 mV and a Tafel slope of 67 mV dec−1 in alkaline solution.  相似文献   

20.
Aqueous Zn-ion batteries (ZIBs) are promising candidates for grid-scale energy storage because of their intrinsic safety, low-cost and high energy-intensity. Vanadium-based materials are widely used as the cathode of ZIBs, especially A2V6O16 ⋅ nH2O (AVO, A=NH4+, Na, K). However, AVO suffers from serious dissolution, phase transformation and narrow gallery spacing (∼3 Å), leading to poor cycling stability and rate capability. Herein, we unveiled the root cause of the performance degradation in the AVO cathode and therefore developed a new high-performance cathode of ZnV6O16 ⋅ 8H2O (ZVO) for ZIB. Through a method of ion exchange induced phase transformation, AVO was converted to hewettite ZVO with larger gallery spacing (∼6 Å) and more stable V6O16 layers. ZVO cathode thus constructed delivers a high capacity of 365 and 170 mAh g−1 at 0.5 and 15 A g−1, while 86 % and 70 % of its capacity are retained at 0.5 A g−1 after 300 cycles and at 15 A g−1 after 10000 cycles, substantially better than conventional AVO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号