首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Au(I)-catalyzed reactions of (2-alkynyl)phenylsulfonyl azetidines bearing terminal and non-terminal alkynes in the presence of methanol as protic nucleophile to form benzosultams derivatives were studied by density functional theory (DFT) calculations. Our study highlights that gold(I) catalyzed nucleophilic addition of the nitrogen on the alkyne is favored over the direct ring opening of the azetidine by methanol, confirming the ammonium-based mechanism. In addition, the reverse regioselectivity observed experimentally where non-terminal alkynes favors the formation of 6-endo-dig-benzosultams while terminal alkynes favor 5-exo-dig products is also explored through two different scenarios. The first one embraces the classical activation of the alkyne by a single Au(I) species while the second one tackles the formation of a σ,π-digold acetylide complex. Calculations identify both pathways as competitive although only mono Au(I) complexes can lead to final products, in good agreement with experimental observation. Further details on the importance of the presence of an excess of the protic nucleophile on the protodemetallation step and the final aminal formation is also discussed.  相似文献   

2.
A new protocol for the synthesis of a variety of N‐containing aromatic heterocycles by a formal gold‐catalyzed dehydro‐Diels–Alder reaction of ynamide derivatives has been developed. Deuterium‐labeling experiments and kinetic studies support the involvement of a dual gold catalysis mechanism in which a gold acetylide moiety adds onto an aurated keteneiminium.  相似文献   

3.
A series of dinuclear gold σ,π‐propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π‐complex of gold with a gold acetylide. The air‐stable and storable catalysts can be isolated as silver‐free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw‐away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis.  相似文献   

4.
Gold-catalyzed annulation of N-propargyl ynamides with anthranils can proceed by two distinct mechanisms. In the case of a terminal N-propargyl ynamide, its resulting α-imino gold carbene reacts with a tethered alkyne to generate a vinyl cation to enable hydrolysis, which ultimately yields a pyrrolo[2,3-b]quinoline derivative after treatment with p-toluenesulfonic acid. For an internal alkyne, its α-imino gold carbene reacts with a tethered alkyne via either a vinyl cation or an alkenylgold carbene; both paths ultimately lead to a 4-ketone-2-aminopyrrole derivative. Our mechanistic analysis indicates that water is a better nucleophile than anthranil for terminal ynamides, whereas water and anthranils are equally reactive for internal ynamides.  相似文献   

5.
A detailed study of the gold‐catalyzed tandem 1,3‐carboxy migration/allene–enyne cycloisomerization was undertaken. It was found that after the initial allene formation the selectivity of the reaction is strongly influenced by the polarization of the remaining alkyne. Depending on the substitution pattern of the starting diynes, either a Schmittel‐ or a Myers–Saito‐type cyclization was triggered. The 6‐endo‐dig Myers–Saito‐type cyclization gave access to benzo[b]fluorenes, while the Schmittel pathway (5‐exo‐dig) delivered benzofulvenes as final products. In special cases a yet unknown pathway was opened by the ambiphilic nature of the allene moiety. In these cases completely different products were obtained by the nucleophilic attack of the alkyne moiety onto the allene that can also act as an electrophile. Mechanistic studies revealed that diradical pathways can be ruled out for this type of tandem cyclization reactions and it is shown that both steps of the reaction cascade are catalyzed by the gold complex.  相似文献   

6.
The synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr ( LH ) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2 , this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5 . When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.  相似文献   

7.
Density functional theory calculations were carried out to reveal the mechanistic details of aldehyde–alkyne reductive couplings with trialkylsilane/dialkylsilane. The reaction with trialkylsilane is found to proceed through oxidative cyclization, Si-H/Ni-O σ-bond metathesis, and C(sp2)-H reductive elimination, leading to silylated allylic alcohols. The steric hindrance between the n-pent group of alkyne and iPr group of the NHC ligand determines the regioselectivity. While for the reaction with dialkylsilane, the present calculations propose a new mechanism, which consists of oxidative cyclization, Si−H/Ni−O σ-bond metathesis, Ni−C/Si−H σ-bond metathesis, and dehydrogenation, resulting in oxasilacyclopentenes. The calculated energy profiles rationalize the experimentally observed chemodivergence.  相似文献   

8.
The competition between π‐ and dual σ,π‐gold‐activation modes is revealed in the gold(I)‐catalyzed heterocyclization of 1‐(o‐ethynylaryl)urea. A noticeable effect of various ligands in gold complexes on the choice of these activation modes is described. The cationic [Au(IPr)]+ (IPr=2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidene) complex cleanly promotes the π activation of terminal alkynes, whereas [Au(PtBu3)]+ favors intermediate σ,π species. In this experimental and mechanistic study, which includes kinetic and cross‐over experiments, several σ‐gold, σ,π‐gold, and other gold polynuclear reaction intermediates have been isolated and identified by NMR spectroscopy, X‐ray diffraction, or MALDI spectrometry. The ligand control in the simultaneous or alternative π‐ and σ,π‐activation modes is also supported by deuterium‐labeling experiments.  相似文献   

9.
A regioselective sulfonyl/sulfinyl migration cycloisomerization cascade of alkyne‐tethered ynamides is developed in the presence of XPhosgold catalyst. This reaction is the first example of a general [1,3]‐sulfonyl migration from the nitrogen center to the β‐carbon atom of ynamides, followed by umpolung 5‐endo‐dig cyclization of the ynamide α‐carbon atom to the gold‐activated alkyne, and final deaurative [1,5]‐sulfinylation. This process allows the synthesis of peripherally decorated unconventional 4‐sulfinylated pyrroles with broad scope from N‐propargyl‐tethered ynamides. In contrast, N‐homopropargyl‐tethered ynamides undergo intramolecular tetradehydro Diels–Alder reaction to provide 2,3‐dihydro‐benzo[f]indole derivatives. Control experiments and density‐functional theory studies were used to study the reaction pathways.  相似文献   

10.
A wide range of gold‐catalyzed reactions based on a dual activation mechanism has recently been reported in the literature. Herein, we present a computational investigation of the mechanism for the formation of dibenzopentalenes from 1‐ethynyl‐2‐(phenylethynyl)benzene. Transition states have been found, which substantiate the dual activation mechanism previously published and furthermore point towards a continuous presence of two gold moieties throughout the mechanistic cycle, an observation of high importance for all reactions in the field of dual activation. The initial activation of the diyne has been shown to proceed via an intermolecular transfer of a cationic gold catalyst from the thermodynamically preferred geminal‐σ,π‐acetylide complex to the active non‐geminal analogue. Furthermore, the regioselectivity of a 5‐endo versus a 6‐endo cyclization has been addressed, and the 5‐endo cyclization was found to be most favorable both thermodynamically and with regard to the activation barrier.  相似文献   

11.
The reaction of thiophene‐based diynes with dual‐activation gold catalysts can provide cyclobutene derivatives or different polycycles by selective C?H insertion reactions. Also, the first σ,π‐digold diyne complex was obtained in a stoichiometric reaction, providing insight into the dual activation mechanism. The new products were unambiguously identified by X‐ray single‐crystal structure analysis.  相似文献   

12.
The discovery of complementary methods for enantioselective transition metal-catalyzed cyclization with silyloxyenynes has been accomplished using chiral phosphine ligands. Under palladium catalysis, 1,6-silyloxyenynes bearing a terminal alkyne led to the desired five-membered ring with high enantioselectivities (up to 91% ee). As for reactions under cationic gold catalysis, 1,6- and 1,5-silyloxyenynes bearing an internal alkyne furnished the chiral cyclopentane derivatives with excellent enantiomeric excess (up to 94% ee). Modification of the substrate by incorporating an α,β-unsaturation led to the discovery of a tandem cyclization. Remarkably, using silyloxy-1,3-dien-7-ynes under gold catalysis conditions provided the bicyclic derivatives with excellent diastereo- and enantioselectivities (up to >20:1 dr and 99% ee).  相似文献   

13.
Differently substituted terminal alkynes that bear sulfonate leaving groups at an appropriate distance were converted in the presence of a propynyl gold(I) precatalyst. After initial formation of a gold acetylide, a cyclization takes place at the β‐carbon atom of this species. Mechanistic studies support a mechanism that is related to that of dual gold‐catalyzed reactions, but for the new substrates, only one gold atom is needed for substrate activation. After formation of a gold vinylidene complex, which forms a tight contact ion pair with the sulfonate leaving group, recombination of the two parts delivers vinyl sulfonates, which are valuable targets that can serve as precursors for cross‐coupling reactions, for example.  相似文献   

14.
Pnictogen-bonding catalysis and supramolecular σ-hole catalysis in general is currently being introduced as the non-covalent counterpart of covalent Lewis acid catalysis. With access to anti-Baldwin cyclizations identified as unique characteristic, pnictogen-bonding catalysis appeared promising to elucidate one of the hidden enigmas of brevetoxin-type epoxide opening polyether cascade cyclizations, that is the cyclization of certain trans epoxides into cis-fused rings. In principle, a shift from SN2- to SN1-type mechanisms could suffice to rationalize this inversion of configuration. However, the same inversion could be explained by a completely different mechanism: Ring opening with C−C bond cleavage into a branched hydroxy-5-enal and the corresponding cyclic hemiacetal, followed by cascade cyclization under conformational control, including stereoselective C−C bond formation. In this report, a pnictogen-bonding supramolecular SbV catalyst is used to demonstrate that this unorthodox polyether cascade cyclization mechanism occurs.  相似文献   

15.
The gold(I)-mediated reaction between an internal alkyne and methanol proceeds by a dual activation mechanism, which directly results in formation of gem-diaurated intermediates. Reaction intermediates were investigated by IR multiphoton dissociation spectroscopy, kinetics by NMR spectroscopy, and the mechanism by DFT calculations.  相似文献   

16.
Ynamides are typically more reactive than simple alkynes and olefins. However, a serendipitous observation revealed a rare case where the reactivity of simple alkynes exceeds that of ynamides. This led to the development of a unique sulfur‐radical‐triggered cyclization of yne‐tethered ynamides, which involves attack of the alkyne by a thiyl radical followed by cyclization with the ynamide. A wide range of novel 4‐thioaryl pyrroles that could tolerate common functional moieties and N‐protecting groups were expediently constructed by this strategy. The current method contrasts with the typical cyclization of yne‐ynamides, which involves the attack of the alkyne moiety by the ynamide core. Control experiments and DFT calculations supported the participation of the sulfur radical in the reaction and the regioselective cyclization. The synthetic potential of the substituted pyrroles is also discussed.  相似文献   

17.
A cobalt‐catalyzed dual annulation reaction for the synthesis of variously substituted indenoisoquinolinones from 2‐bromobenzaldehydes, amines, and methyl 2‐(ethynyl)benzoates has been developed. This method could also be applied to the synthesis of an array of highly functionalized bioactive indenoisoquinolinones and their derivatives. A possible mechanism of the cobalt catalysis is proposed, involving imine formation from bromobenzaldehyde and the amine, followed by a series of oxidative addition, alkyne insertion, cyclization reactions, and carbon–carbon double‐bond migration. The regioselective alkyne insertion plays an important role for the success of the second annulation.  相似文献   

18.
The cyclizations of enynes substituted at the alkyne gives products of formal [4+2] cyclization with Au(I) catalysts. 1,8-Dien-3-ynes cyclize by a 5-exo-dig pathway to form hydrindanes. 1,6-Enynes with an aryl ring at the alkyne give 2,3,9,9a-tetrahydro-1H-cyclopenta[b]naphthalenes by a 5-exo-dig cyclization followed by a Friedel-Crafts-type ring expansion. A 6-endo-dig cyclization is also observed in some cases as a minor process, although in a few cases, this is the major cyclization pathway. In addition to cationic gold complexes bearing bulky biphenyl phosphines, a gold complex with tris(2,6-di-tert-butylphenyl)phosphite is exceptionally reactive as a catalyst for this reaction. This cyclization can also be carried out very efficiently with heating under microwave irradiation. DFT calculations support a stepwise mechanism for the cycloaddition by the initial formation of an anti-cyclopropyl gold(I)-carbene, followed by its opening to form a carbocation stabilized by a pi interaction with the aryl ring, which undergoes a Friedel-Crafts-type reaction.  相似文献   

19.
The cationic complex [(JohnPhos–Au)3(acetylide)][SbF6] (JohnPhos=(2-biphenyl)di-tert-butylphosphine, L1) has been characterised structurally and features an acetylide–trigold(I)–JohnPhos system; the trinuclear–acetylide unit, coordinated to the monodentate bulk phosphines, adopts an unprecedented μ,η121 coordination mode with an additional interaction between distal phenyl rings and gold centres. Other cationic σ,π-[(gold(I)L1)2] complexes have also been isolated. The reaction of trimethylsilylacetylene with various alcohols (iPrOH, nBuOH, n-HexOH) catalysed by cationic [AuIL1][SbF6] complexes in CH2Cl2 at 50 °C led to the formation of acetaldehyde acetals with a high degree of chemo- and regioselectivity. The reaction mechanism was studied, and several organic and inorganic intermediates have been characterised. A comparative study with the analogous cationic [CuIL1][PF6] complex revealed different behaviour; the copper metal is lost from the coordination sphere leading to the formation of cationic vinylphosphonium and copper nanoparticles. Additionally, a new catalytic approach for the formation of this high-value cationic vinylphosphonium has been established.  相似文献   

20.
The hydroauration of internal and terminal alkynes by gold(III) hydride complexes [(C^N^C)AuH] was found to be mediated by radicals and proceeds by an unexpected binuclear outer‐sphere mechanism to cleanly form trans‐insertion products. Radical precursors such as azobisisobutyronitrile lead to a drastic rate enhancement. DFT calculations support the proposed radical mechanism, with very low activation barriers, and rule out mononuclear mechanistic alternatives. These alkyne hydroaurations are highly regio‐ and stereospecific for the formation of Z‐vinyl isomers, with Z/E ratios of >99:1 in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号