首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To seek for high‐performance small molecule donor materials used in heterojunction solar cell, six acceptor–donor–acceptor small molecules based on naphtho[2,3‐b:6,7‐b′]dithiophene ( NDT ) units with different acceptor units were designed and characterized using density functional theory and time‐dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 ( TDPP = thiophene‐capped diketopyrrolopyrrole). The open circuit voltage (Voc), energetic driving force(ΔEL‐L), and exciton binding energy (Eb) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3–7 match well with the acceptor material PC61BM , and compounds 3–5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1 , system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher Voc, lower Eb, and similar carrier mobility. An in‐depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Charge‐assisted halogen bonding is unambiguously revealed from structural and electronic investigations of a series of isostructural charge‐transfer complexes derived from iodinated tetrathiafulvalene and tetracyanoquinodimethane derivatives, (EDT‐TTFI2)2(TCNQFn), n=0–2, which exhibit variable degrees of ionicity. The iodinated tetrathiafulvalene derivative, EDT‐TTFI2, associates with tetracyanoquinodimethane (TCNQ) and its derivatives of increasing reduction potential (TCNQF, TCNQF2) through highly directional C? I???N≡C halogen‐bond interactions. With the less oxidizing TCNQ acceptor, a neutral and insulating charge‐transfer complex is isolated whereas with the more oxidizing TCNQF2 acceptor, an ionic, highly conducting charge‐transfer salt is found, both of 2:1 stoichiometry and isostructural with the intermediate TCNQF complex, in which a neutral–ionic conversion takes place upon cooling. A correlation between the degree of charge transfer and the C? I???N≡C halogen‐bond strength is established from the comparison of the structures of the three isostructural complexes at temperatures from 300 to 20 K, thus demonstrating the importance of electrostatics in the halogen‐bonding interaction. The neutral–ionic conversion in (EDT‐TTFI2)2(TCNQF) is further investigated through the temperature dependence of its magnetic susceptibility and the stretching modes of the C≡N groups.  相似文献   

3.
Photoinduced electron‐transfer processes in fullerene‐based donor–acceptor dyads (D? B? A) in homogeneous and cluster systems are summarized. Stabilization of charge has been achieved through the use of fullerene substituted‐aniline/heteroaromatic dyads with tunable ionization potentials and also by using fullerene clusters. The rate constants for charge separation (kCS) and charge recombination (kCR) in fullerene substituted‐aniline/heteroaromatic dyads show that forward electron transfer falls in the normal region of the Marcus curve and the back electron transfer in the inverted region of the Marcus parabola. Clustering of fullerene‐based dyads assists in effective delocalization of the separated charge and thereby slows down the back electron transfer in these cases.  相似文献   

4.
An electronically push–pull type dimethylaminoazobenzene–fullerene C60 hybrid was designed and synthesized by tailoring N,N‐dimethylaniline as an electron donating auxochrome that intensified charge density on the β‐azonitrogen, and on N‐methylfulleropyrrolidine (NMFP) as an electron acceptor at the 4 and 4′ positions of the azobenzene moiety, respectively. The absorption and charge transfer behavior of the hybrid donor‐bridge‐acceptor dyad were studied experimentally and by performing TD‐DFT calculations. The TD‐DFT predicted charge transfer interactions of the dyad ranging from 747 to 601 nm were experimentally observed in the UV‐vis spectra at 721 nm in toluene and dichloromethane. A 149 mV anodic shift in the first reduction potential of the N?N group of the dyad in comparison with the model aminoazobenzene derivative further supported the phenomenon. Analysis of the charge transfer band through the orbital picture revealed charge displacement from the n(N?N) (nonbonding) and π (N?N) type orbitals centered on the donor part to the purely fullerene centered LUMOs and LUMO+n orbitals, delocalized over the entire molecule. The imposed electronic perturbations on the aminoazobenzene moiety upon coupling it with C60 were analyzed by comparing the TD‐DFT predicted and experimentally observed electronic transition energies of the dyad with the model compounds, NMFP and (E)‐N,N‐dimethyl‐4‐(p‐tolyldiazenyl)aniline (AZNME). The n(N?N) → π*(N?N) and π(N?N) → π*(N?N) transitions of the dyad were bathochromically shifted with a significant charge transfer character. The shifting of π(N?N) → π*(N?N) excitation energy closer to the n → π*(N?N) in comparison with the model aminoazobenzene emphasized the predominant existence of charge separated quinonoid‐like ground state electronic structure. Increasing solvent polarity introduced hyperchromic effect in the π(N?N) → π*(N?N) electronic transition at the expense of transitions involved with benzenic states, and the extent of intensity borrowing was quantified adopting the Gaussian deconvolution method. On a comparative scale, the predicted excitation energies were in reasonable agreement with the observed values, demonstrating the efficiency of TD‐DFT in predicting the localized and the charge transfer nature of transitions involved with large electronically asymmetric molecules with HOMO and LUMO centered on different parts of the molecular framework. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
Straightforward modulation of the gelation, absorption and luminescent properties of a tris(pyrene) organogelator containing a C3‐symmetric benzene‐1,3,5‐tricarboxamide central unit functionalized by three 3,3′‐diamino‐2,2′‐bipyridine fragments is achieved through donor–acceptor interactions in the presence of tetracyanoquinodimethane.  相似文献   

6.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

7.
Construction of local donor–acceptor architecture is one of the valid means for facilitating the intramolecular charge transfer in organic semiconductors. To further accelerate the interface charge transfer, a ternary acceptor–donor–acceptor (A1-D-A2) molecular junction is established via gradient nitrogen substituting into the polymer skeleton. Accordingly, the exciton splitting and interface charge transfer could be promptly liberated because of the strong attracting ability of the two different electron acceptors. Both DFT calculations and photoluminescence spectra elucidate the swift charge transfer at the donor-acceptor interface. Consequently, the optimum polymer, N3-CP, undergoes a remarkable photocatalytic property in terms of hydrogen production with AQY405 nm=26.6 % by the rational design of asymmetric molecular junctions on organic semiconductors.  相似文献   

8.
The complexation of electron donor–acceptor complexes of 8-hydroxyquinoline (8HQ) and metadinitrobenzene (MNB) have been studied spectrophotometrically and thermodynamically in different polar solvent at room temperature. A new absorption band due to charge transfer (CT) transition is observed in the visible region. A new theoretical model has been developed which take into account the interaction between electronic subsystem of 8HQ and MNB. The results indicate the extent of charge transfer complexes (CTCs) formation to be more in less polar solvents. Stoichiometry of the complex was found to be 1:1 by straight line method and 1H NMR between donor and acceptor at the maximum absorption bands. Ionization potential (ID) and resonance energy (RN) were determined from the CT transition energy in different solvents. The formation constants of the complexes were determined in different polar solvents from which ΔG° formation of the complexes was estimated and also extinction coefficient of the charge transfer complex (CTC) was calculated. Oscillator strength, transition dipole strengths and maximum wavelength of the CTC (λCT) in various solvents and IR spectra of the CTC have also been discussed. It has been observed that all parameters described above changed with change in polarity and concentration of donor.  相似文献   

9.
Liquid crystal elastomers (LCEs) with intrinsic anisotropic strains are reversible shape‐memory polymers of interest in sensor, actuator, and soft robotics applications. Rapid gelation of LCEs is required to fix molecular ordering within the elastomer network, which is essential for directed shape transformation. A highly efficient photo‐cross‐linking chemistry, based on two‐step oxygen‐mediated thiol–acrylate click reactions, allows for nearly instant gelation of the main‐chain LCE network upon exposure to UV light. Molecular orientation from the pre‐aligned liquid crystal oligomers can be faithfully transferred to the LCE films, allowing for preprogrammed shape morphing from two to three dimensions by origami‐ (folding‐only) and kirigami‐like (folding with cutting) mechanisms. The new LCE chemistry also enables widely tunable physical properties, including nematic‐to‐ isotropic phase‐transition temperatures (TN‐I), glassy transition temperatures (Tg), and mechanical strains, without disrupting the LC ordering.  相似文献   

10.
Ab initio calculations were performed to investigate the charge separation and charge recombination processes in the photoinduced electron transfer reaction between tetracyanoethylene and acenaphthylene. The excited states of the charge‐balanced electron donor–acceptor complex and the singlet state of ion pair complex were studied by employing configuration interaction singles method. The equilibrium geometry of electron donor–acceptor complex was obtained by the second‐order Møller–Plesset method, with the interaction energy corrected by the counterpoise method. The theoretical study of ground state and excited states of electron donor–acceptor complex in this work reveals that the S1 and S2 states of the electron donor–acceptor complexes are excited charge transfer states, and charge transfer absorptions that corresponds to the S0 → S1 and S0 → S2 transitions arise from π–π* excitations. The charge recombination in the ion pair complex will produce the charge‐balanced ground state or excited triplet state. According to the generalized Mulliken–Hush model, the electron coupling matrix elements of the charge separation process and the charge recombination process were obtained. Based on the continuum model, charge transfer absorption and charge transfer emission in the polar solvent of 1,2‐dichloroethane were investigated. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 23–35, 2003  相似文献   

11.
A new series of donor–bridge–acceptor (D–B–A) compounds consisting of π‐conjugated oligofluorene (oFL) bridges between a ferrocene (Fc) electron‐donor and a fullerene (C60) electron‐acceptor have been synthesized. In addition to varying the length of the bridge (i.e., mono‐ and bi‐fluorene derivatives), four different ways of linking ferrocene to the bridge have been examined. The Fc moiety is linked to oFL: 1) directly without any spacer, 2) by an ethynyl linkage, 3) by a vinylene linkage, and 4) by a p‐phenylene unit. The electronic interactions between the electroactive species have been characterized by cyclic voltammetry, absorption, fluorescence, and transient absorption spectroscopy in combination with quantum chemical calculations. The calculations reveal exceptionally close energy‐matching between the Fc and the oFL units, which results in strong electronic‐coupling. Hence, intramolecular charge‐transfer may easily occur upon exciting either the oFLs or Fcs. Photoexcitation of Fc–oFL–C60 conjugates results in transient radical‐ion‐pair states. The mode of linkage of the Fc and FL bridge has a profound effect on the photophysical properties. Whereas intramolecular charge‐separation is found to occur rather independently of the distance, the linker between Fc and oFL acts (at least in oFL) as a bottleneck and significantly impacts the intramolecular charge‐separation rates, resulting in beta values between βCS 0.08 and 0.19 Å?1. In contrast, charge recombination depends strongly on the electron‐donor–acceptor distance, but not at all on the linker. A value of βCR (0.35±0.01 Å?1) was found for all the systems studied. Oligofluorenes prove, therefore, to be excellent bridges for probing how small structural variations affect charge transport in D–B–A systems.  相似文献   

12.
Molecular organization of donor and acceptor chromophores in self‐assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light‐harvesting systems. With this in mind, a redox‐active porous interpenetrated metal–organic framework (MOF), {[Cd(bpdc)(bpNDI)] ? 4.5 H2O ? DMF}n ( 1 ) has been constructed from a mixed chromophoric system. The μ‐oxo‐bridged secondary building unit, {Cd2(μ‐OCO)2}, guides the parallel alignment of bpNDI (N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2=4,4′‐biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter‐net electron transfer. Encapsulation of electron‐donating aromatic molecules in the electron‐deficient channels of 1 leads to a perfect donor–acceptor co‐facial organization, resulting in long‐lived charge‐separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.  相似文献   

13.
Much effort has been devoted to investigating the unusual properties of the π electrons in Möbius cyclacenes, which are localized in a special region. However, the localized π electrons are a disadvantage for applications in optoelectronics, because intramolecular charge transfer is limited. This raises the question of how the intramolecular charge transfer of a Möbius cyclacene with clearly localized π electrons can be enhanced. To this end, [8]Möbius cyclacene ([8]MC) is used as a conjugated bridge in a donor–π‐conjugated bridge–acceptor (D–π–A) system, and NH2‐6‐[8]MC‐10‐NO2 exhibits a fascinating spiral charge‐transfer transition character that results in a significant difference in dipole moments Δμ between the ground state and the crucial excited state. The Δμ value of 6.832 D for NH2‐6‐[8]MC‐10‐NO2 is clearly larger than that of 0.209 D for [8]MC. Correspondingly, the first hyperpolarizability of NH2‐6‐[8]MC‐10‐NO2 of 12 467 a.u. is dramatically larger than that of 261 a.u. for [8]MC. Thus, constructing a D–π–A framework is an effective strategy to induce greater spiral intramolecular charge transfer in MC although the π electrons are localized in a special region. This new insight into the properties of π electrons in Möbius cyclacenes may provide valuable information for their applications in optoelectronics.  相似文献   

14.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

15.
The effects of acceptor–donor interactions in thienyl substituted benzimidazole-nitronyl nitroxides (TBNN) on the absorption spectroscopy, spin density distribution, magnetic behavior, and crystallographic packing were explored through spectroscopy, computation, and characterization of structure and magnetic properties in the crystalline phase. The electronic spectra of the radicals exhibit a strong broad absorption in the NIR (λmax  1000 nm) that exhibits solvatochromism consistent with charge transfer between the thienyl (donor) and benzonitronyl nitroxide (acceptor) dyads. Computational analysis allowed assignment of the transition as a HOMO–SOMO transition (TD-DFT UB3LYP/6-31G7). The TBNN radicals form highly disordered slipped π-stacks in the solid state that give rise to antiferromagnetic interactions consistent with 1D chain interactions. The magnetic behavior was well-fit to a Bonner–Fisher model to give exchange parameters of J = ?2 to ?10 cm?1 depending on substitution. The weak exchange parameters are attributed to the degree of solid-state disorder, and the observed properties can be rationalized by the effects of substitution on the electronic structure and topology of the radicals.  相似文献   

16.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

17.
The spectrophotometric kinetic charge–transfer complex formation of iodine trichloride (ICl3) with Dibenzo-18-crown-6 (DB18C6), Dicyclohexyl-18-crown-6 (DC18C6) has been studied in chloroform; dichloromethane and propylene carbonate solutions at different temperatures. The results indicated immediate formation of an electron donor–electron acceptor complex; which is followed by two relatively slow consecutive reactions. The pseudo-first-order rate constants for the formation of the ionic intermediate and the final product have been evaluated at various temperatures by computer fitting of the absorbance–time data to appropriate equations. The influences of both the crown’s structure and the solvent properties on the formation of donor–electron acceptor complexes and the rates of subsequent reactions are discussed.  相似文献   

18.
Strong push-pull interactions between electron donor, diaminoazobenzene (azo), and an electron acceptor, perylenediimide (PDI), entities in the newly synthesized A−D−A type triads (A=electron acceptor and D=electron donor) and the corresponding A−D dyads are shown to reveal wide-band absorption covering the entire visible spectrum. Electrochemical studies revealed the facile reduction of PDI and relatively easier oxidation of diaminoazobenzene in the dyads and triads. Charge transfer reversal using fluorescence-spectroelectrochemistry wherein the PDI fluorescence recovery upon one-electron oxidation, deterring the charge-transfer interactions, was possible to accomplish. The charge transfer state density difference and the frontier orbitals from the DFT calculations established the electron-deficient PDI to be an electron acceptor and diaminoazobenzene to be an electron donor resulting in energetically closely positioned PDI δ− -Azo δ+ -PDI δ− quadrupolar charge-transfer states in the case of triads and Azo δ+ -PDI δ− dipolar charge-transfer states in the case of dyads. Subsequent femtosecond transient absorption spectral studies unequivocally proved the occurrence of excited-state charge transfer in these dyads and triads in benzonitrile wherein the calculated forward charge transfer rate constants, kf, were limited to instrument response factor, meaning >1012 s−1 revealing the occurrence of ultrafast photo-events. The charge recombination rate constant, kr, was found to depend on the type of donor-acceptor conjugates, that is, it was possible to establish faster kr in the case of triads (∼1011 s−1) compared to dyads (∼1010 s−1). Modulating both ground and excited-state properties of PDI with the help of strong quadrupolar and dipolar charge transfer and witnessing ultrafast charge transfer events in the studied triads and dyads is borne out from the present study.  相似文献   

19.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

20.
The synthesis and photophysical properties of several porphyrin (P)–phthalocyanine (Pc) conjugates (P–Pc; 1 – 3 ) are described, in which the phthalocyanines are directly linked to the β‐pyrrolic position of a meso‐tetraphenylporphyrin. Photoinduced energy‐ and electron‐transfer processes were studied through the preparation of H2P–ZnPc, ZnP–ZnPc, and PdP–ZnPc conjugates, and their assembly through metal coordination with two different pyridylfulleropyrrolidines ( 4 and 5 ). The resulting electron‐donor–acceptor hybrids, which were formed by axial coordination of compounds 4 and 5 with the corresponding phthalocyanines, mimicked the fundamental processes of photosynthesis; that is, light harvesting, the transduction of excited‐state energy, and unidirectional electron transfer. In particular, photophysical studies confirmed that intramolecular energy‐transfer resulted from the S2 excited state as well as from the S1 excited state of the porphyrins to the energetically lower‐lying phthalocyanines, followed by an intramolecular charge‐transfer to yield P–Pc.+ ? C60.?. This unique sequence of processes opens the way for solar‐energy‐conversion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号