首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
综述了新型过渡金属碳化物和/或氮化物(MXenes)二维纳米材料的合成及其在电化学能源存储与转换中应用的研究进展,这些应用可以分为如下三类:二次电池、超级电容器以及电化学催化。 由于具有二维结构、金属导电性、亲水性表面以及其它优点,MXene二维纳米材料在这些应用领域展示了良好的性能,而且还可以通过嵌入、复合、掺杂、组装等方法来进一步提高其电化学性能。 本文为新型MXenes以及相关材料的开发、合成和应用提供了思路,这种新型MXenes 材料可以用于能量存储与转换、电子和催化等领域。  相似文献   

2.
In this roadmap, two-dimensional materials including graphene, black phosporus, MXenes, covalent organic frameworks, oxides, chalcogenides, and others, are highlighted in energy storage and conversion.  相似文献   

3.
MXenes are a class of 2D/layered materials which are highly conductive, hydrophilic, have a large electrochemical surface area and are easily processible into electrodes for energy applications. Since the discovery of MXenes over ten years ago, these materials have been mainly used in the preparation of electrodes for batteries and supercapacitors. However, due to their aforementioned properties, MXenes could potentially be utilised as a component in the catalyst layer for the Oxygen Evolution Reaction (OER). This opinion piece will discuss some of the recent literature in the area of hybrid catalysts consisting of various Transition Metal Oxides (TMOs) and MXenes for the OER. We will also discuss current drawbacks and future outlook in this new area of research.  相似文献   

4.
Energy storage and conversion have attained significant interest owing to its important applications that reduce CO2 emission through employing green energy. Some promising technologies are included metal-air batteries, metal-sulfur batteries, metal-ion batteries, electrochemical capacitors, etc. Here, metal elements are involved with lithium, sodium, and magnesium. For these devices, electrode materials are of importance to obtain high performance. Two-dimensional (2D) materials are a large kind of layered structured materials with promising future as energy storage materials, which include graphene, black phosporus, MXenes, covalent organic frameworks (COFs), 2D oxides, 2D chalcogenides, and others. Great progress has been achieved to go ahead for 2D materials in energy storage and conversion. More researchers will join in this research field. Under the background, it has motivated us to contribute with a roadmap on ‘two-dimensional materials for energy storage and conversion.  相似文献   

5.
Since their discovery in 2011, MXene compounds, and in particular the Ti3C2-based phases, have gained increasing interest from researchers leading to over 2000 scientific works in 2020. The peculiar morphological, charge transport, and surface properties make the MXenes ideal materials for energy storage applications such as active material in alkaline ion batteries and supercapacitors, as conductive or buffer agent in composite electrodes for high energy applications, and as electrocatalytic materials for oxygen evolution or redox flow batteries. Among this almost endless literature, this work focuses on 5 recent articles (2019/2020) that summarize the potential of MXenes in different energy storage applications, also resuming the most promising preparatory routes regarding industrial scalability.  相似文献   

6.
Novel nanomaterials and advanced nanotechnology continuously push forward the rapid development of sustainable energy conversion and storage equipment. An emerging family of two-dimensional transition-metal carbides, nitrides and carbonitrides, also known as MXenes, have attracted increasing attention and in depth investigation. Benefitting from their unique intrinsic properties, MXenes have attracted significant attention and they have been considered as promising candidate materials for the development of environmentally friendly energy resources. A large number of studies show that MXenes have great potential in energy conversion and storage fields. Despite of their exceptional properties, MXenes also have some inherent characteristics, such as low capacities and unstable retention performances, which severely hinder their prospect applications in energy conversion and storage fields. In this Minireview, the latest progress on MXenes and their hybrid composites with small molecules, polymers, carbon or metal ions, and their applications in energy conversion and storage fields is highlighted, including their use in different types of batteries, supercapacitors, hydrogen/oxygen evolution reactions, electromagnetic interference absorption/shielding and solar steam generation. In addition, the critical challenges and further development prospects of MXene-based materials are also introduced.  相似文献   

7.
《中国化学快报》2021,32(12):3733-3752
Supercapacitors (SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoretical and experimental works have been devoted to exploring various possibilities to increase the functionality and the specific capacitance of electrodes for SCs. Non-carbon two-dimensional (2D) materials have been considered as encouraging electrode candidates for their chemical and physical advantages such as tunable surface chemistry, high electronic conductivity, large mechanical strength, more active sites, and dual non-faradaic and faradaic electrochemical performances. Besides, these 2D materials also play particular roles in constructing highway channels for fast ion diffusion. This concise review summarizes cutting-edge progress of some representative 2D non-carbon materials for the aqueous electrolyte-based SCs, including transition metal oxides (TMOs), transition metal hydroxides (TMHs), transition metal chalcogenides (TMCs), MXenes, metal-organic frameworks (MOFs) and some emerging materials. Different synthetic methods, effective structural designs and corresponding electrochemical performances are reviewed in detail. And we finally present a detailed discussion of the current intractable challenges and technical bottlenecks, and highlight future directions and opportunities for the development of next-generation high-performance energy storage devices.  相似文献   

8.
Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.  相似文献   

9.
With the increased energy demand,developing renewable and clean energy technologies becomes more and more significant to mitigate climate warming and alleviate the environmental pollution.The key point is design and synthesis of low cost and efficient materials for a wide variety of electrochemical reactions.Over the past ten years,two-dimensional(2D)nanomaterials that graphene represents have been paid much attention as a class of the most promising candidates for heterogeneous electrocatalysts in electrochemical storage and conversion.Their unique properties,such as good chemical stability,good flexibility,and good electronic properties,along with their nanosized thickness and large specific area,make them exhibit comprehensively good performances for energy storage and conversion.Here,we present an overview on the recent advances in electrochemical applications of graphene,graphdiyne,transition metal dichalcogenides(TMDs),and MXenes for supercapacitors(SCs),oxygen reduction reaction(ORR),and hydrogen evolution reaction(HER).  相似文献   

10.
面对不可再生资源的快速消耗和环境污染的日益加重,寻找清洁可再生能源势在必行.氢能是一种清洁可再生的能源,是目前最有希望替代化石燃料的一种能源.电化学水分解可用来产生高纯氢气,其中析氢催化剂起着至关重要的作用.尽管贵金属铂基催化剂表现出优异的析氢性能,然而稀缺性和高成本限制了其大规模应用.因此,开发高效和地球存量丰富的电...  相似文献   

11.
《中国化学快报》2021,32(9):2648-2658
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011; they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties. One major feature of MXenes is their tailorable surface terminations (e.g., −F, −O, −OH). Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes. Nonetheless, the underlying mechanisms are still poorly understood, mainly because of the difficulties in quantitative analysis and characterization. This review summarizes the latest research progress on MXene terminations. First, a systematic introduction to the approaches for preparing MXenes is presented, which generally dominates the surface terminations. Then, theoretical and experimental efforts regarding the surface terminations are discussed, and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized. Finally, we present the significance and research prospects of MXene terminations. We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.  相似文献   

12.
《中国化学快报》2020,31(4):969-979
The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercalation can improve the interlayer spacing of MXenes resulting in tunable physical and chemical properties.Moreover,the synchrotron radiation X-ray characterizations have also shown high potential on exploring the property and structu re of cation intercalated MXe nes.This review is mainly focused on the recent achievements of cation intercalated MXenes through different methods on energy storage systems.Synchrotron-based X-ray absorption spectroscopic characterizations are emphasized to probe the local coordination and electronic structure in intercalated MXenes.The outlook of cation intercalation on MXenes and their applications are also discus sed.  相似文献   

13.
在电子信息和物联网技术的推动下,人类对可穿戴电子器件和智能织物的需求愈发突出,功能纤维作为智能可穿戴设备的重要载体,近年来获得快速发展。功能纤维的性能很大程度上取决于纤维的基础构筑单元。过渡金属碳/氮化物(MXenes)作为一种新兴的二维材料,凭借其高电导率、优异的可加工性能、可调节的表面特性以及出色的机械强度等优点,受到了极大的关注,也逐渐成为构筑功能纤维的重要单元。本文将主要综述MXenes的湿化学、熔融盐、无氟试剂刻蚀等方法和力学、电学、光学和化学稳定性等性能,阐述基于该材料制备的功能纤维在传感、储能以及其他智能领域的应用,最后讨论了基于MXenes材料的功能纤维的未来应用前景和技术挑战。  相似文献   

14.
《中国化学快报》2020,31(4):922-930
MXenes have emerged as versatile 2D materials that are already gaining paramount attention in the areas of energy,catalyst,electromagnetic shielding,and sensors.The unique surface chemistry,graphene-like mo rphology,high hydrophilicity,metal-like conductivity with redox capability identifies MXenes,as an ideal material for surface-related applications.This short review summarizes the most recent reports that discuss the potential application of MXenes and their hybrids as a transducer material for advanced sensors.Based on the nature of transducing signals,the discussion is categorized into three sections,which include electrochemical(bio) sensors,gas sensors,and finally,electro-chemiluminescence fluorescent sensors.The review provides a concise summary of all the analytical merits obtained subsequent to the use of MXenes,followed by endeavors that have been made to accentuate the future perspective of MXenes in sensor devices.  相似文献   

15.
MXenes are regarded as a type of two-dimensional (2D) inorganic material, mainly comprising a number of transition metal carbides, nitrides, or carbonitrides atomic planes. Nevertheless, the scientific community is continuously interested in exploring and structuring the engineered-based multifunctional material for numerous applications. The MXenes-based materials in this context, have emerged as highly active compounds owing to their superior surface area, substantial interlayer spacing, highly reactive surface-active sites and surface functional group, even though, recent studies have shown significant scientific and theoretical progress related to enormous prospects in MXenes, chemical nature, robust electrochemistry and high hydrophilicity of MXenes. The role of MXenes in all kinds of strategies is still in an upgrading phase for their further improvement, and is not sufficiently summarized in the literature now. To begin with this, herein, present review article is intended to critically discuss the diversity of MXenes with respect to different composition, formulation, plasmonic, complexation, and numerous geometric and morphological aspects, along with novel construction strategies to improve their surface characteristics in all aforesaid multidimensional applications. Following that, in terms of broadening the application, this review article is envisaged to endorse the use of MXenes and their hybrid configuration in a series of emerging environmental decontamination via adsorption, photodegradation, photocatalytic fuel production via hydrogen evolution, CO2 reduction, electrocatalytic sensing, along with membrane distillation and energy storage. In addition, comprehensive information about existing obstacles and future perspectives have been addressed. Finally, an overview is succinctly summarized and discussed regarding the emerging prospects of MXenes for their potential uses in numerous research fields. At the end, it is anticipated that this review article will pave the way for the effective use of MXenes in different fields of environmental remediation, energy conversion, storage and biomedical applications as an innovative, reliable, and multifunctional material.  相似文献   

16.
刘欢  马宇  曹斌  朱奇珍  徐斌 《物理化学学报》2023,39(5):2210027-0
水系锌离子电池(AZIBs)作为一种低成本、高安全的新兴且前景广阔的储能技术近年来备受关注。新型MXenes材料由于其独特的结构特征和物理化学性质,如易调节的二维结构、优异的导电性、化学组成多样和可控的表面化学特性,在AZIBs中表现出独特的应用优势。本文全面综述近年来MXenes在AZIBs中应用的研究进展,探讨MXenes应用于AZIBs正负极的结构设计及性能优化策略:在正极方面,MXenes可直接作为活性物质或活性物质前驱体、基体材料,以获得高活性、优异的循环寿命和倍率性能;在负极方面,MXenes可作为锌沉积的二维/三维载体、亲锌基体及锌金属界面保护层,以减缓电化学反应过程中锌金属的腐蚀和枝晶生长。此外,本文也对MXenes基材料在AZIBs中应用的发展方向进行展望。  相似文献   

17.
Journal of Solid State Electrochemistry - Since their discovery in 2011, MXenes are extensively studied as materials for electrochemical energy storage systems. The high electric conductivity, 2D...  相似文献   

18.
Aqueous Zn-ion batteries (AZIBs) are considered as promising large-scale energy storage devices due to their high safety and low cost. Transition metal dichalcogenides (TMDs) as the potential aqueous Zn-storage cathode materials are under the research spotlight because of their facile 2D ion-transport channels and weak electrostatic interactions with Zn2+. In this concept article, we summarize the intrinsic structural features and aqueous Zn-storage mechanisms of the TMDs-based electrodes. More significantly, the latest design concepts of TMDs materials for high-performance AZIBs are discussed in detail from three aspects of interlayer expansion engineering, phase transition engineering, and structure defects engineering. Finally, the current challenges facing TMDs cathodes and possible remedies are outlined for future developments towards efficient, rapid, and stable aqueous Zn-ion storage.  相似文献   

19.
The carbon nanotube/polyaniline (CNT/PANI) composites have important potential applications as the electrodes in energy storage devices for their attractive electrochemical properties. In this work, we report a novel method to prepare the interesting paper-like CNT/PANI composites by using the CNT network as the template. Compared with the conventional brittle CNT/PANI composites, these paper-like composites were much thin and flexible. This work demonstrates a new approach, which may transform a brittle polymer into flexible films. Meanwhile, these film electrodes showed much superior electrochemical performance such as higher specific capacitance, lower internal resistivity, and more stability under different current loads. These paper-like composite electrodes have promising applications in new kinds of energy storage devices.  相似文献   

20.
The rapid evolution of portable and wearable electronic devices has fueled the development of smart functional textiles that are able to conduct electricity, sense body movements, or store energy. One main challenge inhibiting the further development of functional textile-based electronics is the lack of robust functional fibers with suitable electrical, electrochemical and sensing functionalities. MXenes, an emerging family of two-dimensional(2D) materials, have shown to be promising candidates...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号