首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tetrathiafulvalene (TTF)‐annulated porphyrins, and their corresponding ZnII complexes, have been synthesized. Detailed electrochemical, photophysical, and theoretical studies reveal the effects of intramolecular charge‐transfer transitions that originate from the TTF fragments to the macrocyclic core. The incremental synthetic addition of TTF moieties to the porphyrin core makes the species more susceptible to these charge‐transfer (CT) effects as evidenced by spectroscopic studies. On the other hand, regular positive shifts in the reduction signals are seen in the square‐wave voltammograms as the number of TTF subunits increases. Structural studies that involve the tetrakis‐substituted TTF–porphyrin (both free‐base and ZnII complex) reveal only modest deviations from planarity. The effect of TTF substitution is thus ascribed to electronic overlap between annulated TTF subunits rather than steric effects. The directly linked thiafulvalene subunits function as both π acceptors as well as σ donors. Whereas σ donation accounts for the substituent‐dependent charge‐transfer transitions, it is the π‐acceptor nature of the appended tetrathiafulvalene groups that dominates the redox chemistry. Interactions between the subunits are also reflected in the square‐wave voltammograms. In the case of the free‐base derivatives that bear multiple TTF subunits, the neighboring TTF units, as well as the TTF ? + generated through one‐electron oxidation, can interact with each other; this gives rise to multiple signals in the square‐wave voltammograms. On the other hand, after metalation, the electronic communication between the separate TTF moieties becomes restricted and they act as separate redox centers under conditions of oxidation. Thus only two signals, which correspond to TTF . + and TTF2+, are observed. The reduction potentials are also seen to shift towards more negative values after metalation, a finding that is considered to reflect an increased HOMO–LUMO gap. To probe the excited‐state dynamics and internal CT character, transient absorption spectral studies were performed. These analyses revealed that all the TTF–porphyrins of this study display relatively short excited‐state lifetimes, which range from 1 to 20 ps. This reflects a very fast decay to the ground state and is consistent with the proposed intramolecular charge‐transfer effects inferred from the ground‐state studies. Complementary DFT calculations provide a mechanistic rationale for the electron flow within the TTF–porphyrins and support the proposed intramolecular charge‐transfer interactions and π‐acceptor effects.  相似文献   

2.
Four tetrathiafulvalene (TTF)‐annulated porphyrins 1 – 4 were synthesized and characterized. All contain a tetraphenylporphyrin (TPP) core onto which four, two, or one TTF subunits were annulated. Absorption and fluorescence spectroscopic studies together with electrochemical investigations reveal that interactions between the porphyrin system and the annulated TTF units take place in solution. The annulation of one or more TTF units to the porphyrin core has a profound effect on the reduction potentials associated with this latter framework, with positive shifts in the range of 0.105 to 0.355 V and 0.200 to 0.370 V for the first and second reduction potential, respectively, compared to the corresponding processes in the model compound TPP, 18 . The redox potentials for the first oxidation of the TTF units are considerably shifted in 4 (ΔEox1=+0.285 V) and 2 (ΔEox1=?0.140 V), whereas for 1 and 3 these potentials remain within the region expected for a normal TTF unit. Considerable changes in the second oxidation potential associated with the TTF subunits were seen for 2 (ΔEox1=?0.085) and 3 (ΔEox1=?0.175). The emission spectra of 1 – 4 revealed that the porphyrin fluorescence is almost quenched in the neutral state of the TTF‐annulated porphyrins, a finding that is consistent with substantial electron transfer taking place from the TTF subunits to the porphyrin core. Oxidation of the TTF unit(s) (TTF→TTF.+) present in 1 – 4 leads to the emission intensity being restored.  相似文献   

3.
Amphiphilic bis(tetrathiafulvalene) [bis(TTF)] macrocycles with four alkyl chains were fabricated as novel electrically active Langmuir-Blodgett (LB) films. Two TTF units were linked via [24]crown-8, [21]crown-7, and [18]crown-6 macrocycles, forming charge-transfer (CT) salts with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (F4-TCNQ) at the air-water interface and on solid substrates. The CT salt of the amphiphilic bis(TTF)-macrocycle having a [24]crown-8 ring system formed a uniform surface morphology on mica. Using single-crystal X-ray structural analysis, the layer structure between the hydrophobic chains and the one-dimensional pi-pi stack of the CT salt was confirmed. Our results show that the bis(TTF)-macrocycle was folded at the flexible [24]crown-8 moiety, forming intramolecular pi-pi dimer structures and one-dimensional intermolecular pi-pi stacks with F4-TCNQ dimers. The open-shell electronic structure of the LB films was determined by electronic spectra, electrical conductivity, and electron spin resonance analyses. Asymmetry was introduced into the bis(TTF)-macrocycle by changing the ring size from [24]crown-8 to [21]crown-7. The surface morphology of the CT salts with F4-TCNQ was established as two-dimensional round-shape domains on mica. Further reduction of the macrocyclic ring from [21]crown-7 to [18]crown-6 resulted in a CT salt of the bis(TTF)-macrocycle with F4-TCNQ with a leaf-shape domain morphology and a typical dimension of approximately 1 microm2 on mica. In general, decreasing the macrocyclic ring size from [24]crown-8 to [21]crown-7 or [18]crown-6 affected the inter- and intramolecular interactions and the surface morphologies of LB films.  相似文献   

4.
采用密度泛函理论方法对以四硫富瓦烯(TTF)为端基、 苯乙烯为桥的5种不同中心核(富电子核: 氮、 三聚咔唑及三聚吲哚; 缺电子核: 三嗪及三聚喹喔啉)构成的星型三支D-π-A型化合物的几何结构、 电子吸收光谱及电荷转移性质进行了研究. 结果表明, 通过改变中心核的类型, 可有效调节LUMO能级, 改变能隙的大小. 电荷差分密度及跃迁密度矩阵分析结果表明, 两支内的TTF端基与核到共轭桥链的电荷转移跃迁及少量的π→π*跃迁对高能吸收带有贡献; 缺电子核化合物的低能吸收峰主要是TTF端基到桥链和中心核的电荷转移跃迁贡献, 不同于富电子核化合物明显的TTF贡献的支内定域电荷转移跃迁. 重组能计算表明, 除化合物NST(中心核为氮)外, 其余4个化合物的空穴重组能(λh)与电子重组能(λe)相当, 中心核为三聚咔唑的化合物CST重组能相对较小.  相似文献   

5.
A series of 1,3,5-phenylene-based rigid dendritic porphyrins were synthesized by Suzuki coupling between a porphyrin core and dendron units. The intramolecular energy transfer was studied by absorption and fluorescence spectroscopies. The encapsulation of the porphyrin core within the 1,3,5-phenylene dendron units was found to provide highly efficient energy transfer from the dendron units to the porphyrin core. The dendritic wedge structure affected the energy transfer efficiency. The 1,3,5-phenylene-based rigid dendron units act as highly efficient light-harvesting antennae. These dendritic porphyrins have also been examined as C(60) hosts and substrate-selective oxidation catalysts. The attachment of the second generation of 1,3,5-phenylene-based dendron units with the porphyrin core enabled a stable inclusion of C(60) in toluene. Furthermore, the size and shape of the nanospace in the rigid dendritic porphyrins were found to affect the selectivity of substrates in the catalytic olefin oxidations.  相似文献   

6.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

7.
Electrochemical and photophysical analysis of new donor–acceptor systems 2 and 3 , in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular‐charge‐transfer (ICT) π(TTF)→π*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3 , the intensity of the 1ICT band is substantially higher compared to that in compound 2 . The corresponding CT fluorescence is also observed in both cases. The radical cation TTF+. is easily observed through chemical and electrochemical oxidation by performing steady‐state absorption experiments. Interestingly, compound 2 is photo‐oxidized under aerobic conditions.  相似文献   

8.
Macrocycles consisting of two tris(phenylene ethynylene) (or tri-PE) units connected via two flexible linkers adopt an ‘unfolded’ conformation that is converted into a folded conformation upon introducing intramolecular hydrogen bonding interaction. These foldable macrocycles are capable of forming inclusion charge transfer (CT) complex with electron-deficient small aromatics.  相似文献   

9.
The synthesis of new hybrid tetrathiafulvalene (TTF) dimers (11a-c) has been carried out by a Wittig-Horner reaction of the respective phosphonate esters (10a-c) with 2-(tetrathiafulvalenylvinyl)-9, 10-anthraquinone (9) prepared by olefination of formyltetrathiafulvalene (7) and the phosphonium salt of anthraquinone 8. Electrochemical studies show that the dimers 11a-c mainly retain the electrochemical properties of both TTF and the pi-extended TTF components, and most importantly, intramolecular electronic interactions between the two moieties are observed by cyclic voltammetry and Osteryoung square wave voltammetry. Semiempirical PM3 calculations reveal an almost planar geometry for the TTF and the benzene ring connected through the vinyl spacer. These compounds can form stable charge-transfer complexes with 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) showing a stoichiometry of 1:3 (D:A). Attempts to electrocrystallize the dimeric donors with different counteranions are discussed.  相似文献   

10.
New C(60)-based triads, constituted by a fulleropyrrolidine moiety and two different electroactive units [donor 1-donor 2 (10, 15a,b), or donor 1-acceptor (17, 21)], have been synthesized by 1,3-dipolar cycloaddition reaction of azomethyne ylides to C(60) and further acylation reaction on the pyrrolidine nitrogen. The electrochemical study reveals some electronic interaction between the redox-active chromophores. Triads bearing tetrathiafulvalene (TTF) and ferrocene (Fc) (10) or pi-extended TTFs and Fc (15a,b) show reduction potentials for the C(60) moiety which are cathodically shifted in comparison to the parent C(60). In contrast, triads endowed with Fc and anthraquinone (AQ) (17) or Fc and tetracyanoanthraquinodimethane (TCAQ) (21) present reduction potentials for the C(60) moiety similar to C(60). Fluorescence experiments and time-resolved transient absorption spectroscopy reveal intramolecular electron transfer (ET) processes from the stronger electron donor (i.e., TTF or extended TTF) to the fullerene singlet excited state, rather than from the poorer ferrocene donor in 10, 15a,b. No evidence for a subsequent ET from ferrocene to TTF(*)(+) or pi-extended TTF(*)(+) was observed.  相似文献   

11.
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB‐TTF) central core and a 2,1,3‐chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB‐TTF, have been synthesised as active materials for organic field‐effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron‐withdrawing 2,1,3‐chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution‐processed single‐crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V?1 s?1 as well as good ambient stability.  相似文献   

12.
Triindolo-truxene, a C3-symmetric molecule with a large π-conjugated plane, has six methylene carbon atoms and three aromatic carbon atoms that can be facilely functionalized. Herein, butyl, carbonyl, cyano, and/or malononitrile groups were introduced at six methylene carbon atoms (6-, 14-, 22- or 8-, 16-, 24-positions) and/or three aromatic carbon atoms (2-, 10-, and 18-positions) of triindolo-truxene to produce eight derivatives. Their photophysical properties, electrochemical properties, and molecular assembly can be effectively modulated by substituents and substitution patterns. Incorporation of electron-deficient groups led to redshifts in both the absorption and emission of these derivatives and also lowered their HOMO and LUMO levels. Different substitution patterns resulted in the different intramolecular donor–acceptor interactions. Electron-deficient substituents at the methylene carbon atoms in the 6-, 14-, and 22-positions led to intramolecular charge transfer from the fluorene arms to the truxene core, whereas the corresponding substitutions at the methylene carbon atoms in the 8-, 16-, and 24-positions resulted in intramolecular charge transfer from the truxene core to the fluorene arms. The molecular packing in single crystals and molecular aggregation in solution are also influenced by the substituents and substitution patterns. This work provides a straightforward strategy to alter the properties of triindolo-truxene.  相似文献   

13.
Schiff-base (SB) derivatives of Ni(II) and Cu(II) porphyrins endowed with various amine functions (R−NH2),n-butylamine,p-anisidine andm-nitroaniline have been prepared from corresponding formyl porphyrins. Protonation studies of these SB derivatives reveal a marked red shift of the optical absorption bands in the visible region relative to the unprotonated imines. The magnitude of the observed red shifts in the protonated derivatives, (SBH+) are found to depend on the electron-withdrawing or electron-donating nature of the R group of the amines. The results of the optical absorption,1H NMR, EPR, and cyclicovoltammetric studies are illustrative of the fact that protonation of the SB derivatives results in a localized positive charge, in the periphery of the porphyrin (p) system. The dibenzo-18-crown-6 interspersedbisporphyrin schiff bases have been prepared fromtrans 4,4′-diamino dibenzo-18-crown-6 and formyl porphyrins. The protonation of these SB derivatives is found to proceed in a concerted fashion. The cation complexation studies by the crown ether entity in thebisporphyrin systems have been investigated using optical absorption, magnetic resonance and electrochemical methods. The redox characteristics of the protonated dimeric SB porphyrins reveal that the first oxidation step involves a two-electron transfer reaction. This is important in view of their possible usage in multielectron transfer reactions of biological and catalytic interest.  相似文献   

14.
A series of tetrathiafulvalene acetylene derivatives, [TTF-Ctriple bondC-A] [A=C6H4N(CH3)2-4 (1), C6H4OCH3-4 (2), C6H5 (3), C6H4F-4 (4), C6H4NO2-4 (5), C5H4N-2 (6), C5H4N-3 (7), and C5H4N-4 (8)], have been designed and synthesized to provide insight into the nature of the donor-acceptor interaction via a pi-conjugated triple bond. The X-ray crystal structure of [TTF-(Ctriple bondC)-C6H4OCH3-4] (2) reveals that the phenyl ring linked by acetylene is almost coplanar to the plane of TTF with a dihedral angle of 3.6 degrees. The strong intermolecular C-H...O hydrogen bonding was found to direct the molecular helical assemblies with a screw pitch of 5.148 A when viewed along the a-axis. Spectroscopic and electrochemical behaviors of the tetrathiafulvalene acetylene derivatives demonstrate that the TTF unit interacts with the electron-accepting group through the triple bond, thus leading to the intramolecular charge transfer. The pyridine-substituted TTF compounds 6-8 show remarkable sensing and coordinating properties toward Pb2+. Comparison of the spectroscopic and electrochemical properties and the calculation at the B3LYP/6-31G* level available in Gaussian 03 reveals that varying the bridged unit of the TTF-pi-A system from a double bond to a triple bond leads to positive shifts for the first and second oxidation potentials of the TTF moieties, while the extent of intramolecular charge transfer interactions through the pi-conjugated triple bond is smaller than that through the double bond.  相似文献   

15.
具有纳米尺寸的四聚四硫富瓦烯大环冠醚的合成   总被引:2,自引:0,他引:2  
以二(碘乙基)醚和2,3-二氰乙硫基四硫富瓦烯衍生物作为起始原料, 采用腈乙基保护与脱保护技术, 通过多步反应以较好的收率合成了两个纳米结构的大环四硫富瓦烯冠醚5a~5b. 通过循环伏安法(CV)研究了化合物4b5b的电化学性质, 并用1H NMR谱研究了5b与[60]富勒烯之间的相互作用. 结果表明: 5b存在环结构效应, 与[60]富勒烯有一定程度的电荷转移相互作用.  相似文献   

16.
A combined experimental and theoretical investigation of the role of proton delivery in determining O2 reduction pathways catalyzed by cofacial bisporphyrins is presented. A homologous family of dicobalt(II) Pacman porphyrins anchored by xanthene [Co2(DPX) (1) and Co2(DPXM) (3)] and dibenzofuran [Co2(DPD) (2) and Co2(DPDM) (4)] have been synthesized, characterized, and evaluated as catalysts for the direct four-proton, four-electron reduction of O2 to H2O. Structural analysis of the intramolecular diiron(III) mu-oxo complex Fe2O(DPXM) (5) and electrochemical measurements of 1-4 establish that Pacman derivatives bearing an aryl group trans to the spacer possess structural flexibilities and redox properties similar to those of their parent counterparts; however, these trans-aryl catalysts exhibit markedly reduced selectivities for the direct reduction of O2 to H2O over the two-proton, two-electron pathway to H2O2. Density functional theory calculations reveal that trans-aryl substitution results in inefficient proton delivery to O2-bound catalysts compared to unsubstituted congeners. In particular, the HOMO of [Co2(DPXM)(O2)]+ disfavors proton transfer to the bound oxygen species, funneling the O-O activation pathway to single-electron chemistry and the production of H2O2, whereas the HOMO of [Co2(DPX)(O2)]+ directs protonation to the [Co2O2] core to facilitate subsequent multielectron O-O bond activation to generate two molecules of H2O. Our findings highlight the importance of controlling both proton and electron inventories for specific O-O bond activation and offer a unified model for O-O bond activation within the clefts of bimetallic porphyrins.  相似文献   

17.
This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)‐based acceptor–donor–acceptor triads (BQ–TTF–BQ and BTCNQ–TTF—BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano‐p‐quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum‐chemical calculations. Emphasis is placed on the mixed‐valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ–TTF–BQ and BTCNQ–TTF–BTCNQ triads in their radical anion states behave as class‐II mixed‐valence compounds with significant electronic communication between the acceptor moieties. Density functional theory calculations (BLYP35/cc‐pVTZ), taking into account the solvent effects, predict charge‐localised species (BQ . ?–TTF–BQ and BTCNQ . ?–TTF–BTCNQ) as the most stable structures for the radical anion states of both triads. A stronger localisation is found both experimentally and theoretically for the BTCNQ–TTF–BTCNQ anion, in accordance with the more electron‐withdrawing character of the BTCNQ acceptor. CASSCF/CASPT2 calculations suggest that the low‐energy, broad absorption bands observed experimentally for the BQ–TTF–BQ and BTCNQ–TTF–BTCNQ radical anions are associated with the intervalence charge transfer (IV‐CT) electronic transition and two nearby donor‐to‐acceptor CT excitations. The study highlights the molecular efficiency of the electron‐donor TTF unit as a molecular wire connecting two acceptor redox centres.  相似文献   

18.
As the most nucleophilic porphyrins, meso‐ or β‐lithiated porphyrins were generated by iodine–lithium exchange reactions of the corresponding iodoporphyrins with n‐butyllithium at ?98 °C. Porphyrinyllithiums thus prepared were used for synthesis of dimesitylporphyrinylboranes through reactions with fluorodimesitylborane. The boryl groups proved to serve as an electron‐accepting unit to alter the photophysical and electrochemical properties. In addition, 5‐diarylamino‐15‐dimesitylboryl‐substituted donor–accepter porphyrins showed increased intramolecular charge‐transfer character in the S1 state. Furthermore, the reaction of β‐lithiated porphyrin with dichloromesitylborane provided a boron‐bridged porphyrin dimer, which exhibited a conjugative interaction between two porphyrin units through the vacant p‐orbital on the boron center.  相似文献   

19.
Two water‐soluble para‐xylylene‐connected 4,4′‐bipyridinium (BIPY2+) polymers have been prepared. UV‐Vis absorption, 1H NMR spectroscopy, and cyclic voltammetry experiments support that in water the BIPY2+ units in the polymers form stable 1:1 charge‐transfer complexes with tetrathiafulvalene (TTF) guests that bear two or four carboxylate groups. These charge‐transfer complexes are stabilized by the donor–acceptor interaction between electron‐rich TTF and electron‐deficient BIPY2+ units and electrostatic attraction between the dicationic BIPY2+ units and the anionic carboxylate groups attached to the TTF core. On the basis of UV‐Vis experiments, a lower limit to the apparent association constant of the TTF?BIPY2+ complexes of the mixtures, 1.8×106 m ?1, has been estimated in water. Control experiments reveal substantially reduced binding ability of the neutral TTF di‐ and tetracarboxylic acids to the BIPY2+ molecules and polymers. Moreover, the stability of the charge‐transfer complexes formed by the BIPY2+ units of the polymers are considerably higher than that of the complexes formed between two monomeric BIPY2+ controls and the dicarboxylate‐TTF donor; this has been attributed to the mutually strengthened electron‐deficient nature of the BIPY2+ units of the polymers due to the electron‐withdrawing effect of the BIPY2+ units.  相似文献   

20.
A compact and planar donor–acceptor molecule 1 comprising tetrathiafulvalene (TTF) and benzothiadiazole (BTD) units has been synthesised and experimentally characterised by structural, optical, and electrochemical methods. Solution‐processed and thermally evaporated thin films of 1 have also been explored as active materials in organic field‐effect transistors (OFETs). For these devices, hole field‐effect mobilities of μFE=(1.3±0.5)×10?3 and (2.7±0.4)×10?3 cm2 V s?1 were determined for the solution‐processed and thermally evaporated thin films, respectively. An intense intramolecular charge‐transfer (ICT) transition at around 495 nm dominates the optical absorption spectrum of the neutral dyad, which also shows a weak emission from its ICT state. The iodine‐induced oxidation of 1 leads to a partially oxidised crystalline charge‐transfer (CT) salt {( 1 )2I3}, and eventually also to a fully oxidised compound { 1 I3} ? 1/2I2. Single crystals of the former CT compound, exhibiting a highly symmetrical crystal structure, reveal a fairly good room temperature electrical conductivity of the order of 2 S cm?1. The one‐dimensional spin system bears compactly bonded BTD acceptors (spatial localisation of the LUMO) along its ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号