共查询到20条相似文献,搜索用时 11 毫秒
1.
Bianca Seidler Jens H. Tran Julian Hniopek Philipp Traber Dr. Helmar Görls Prof. Dr. Stefanie Gräfe Prof. Dr. Michael Schmitt Prof. Dr. Jürgen Popp Dr. Martin Schulz Prof. Dr. Benjamin Dietzek-Ivanšić 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(72):e202202697
In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law. 相似文献
2.
Schiff碱类芳香性金属配合物的合成及XPS研究 总被引:2,自引:0,他引:2
用乙二胺(或丙二胺)缩乙酰丙酮Schiff碱三齿配体与咪唑(或苯并咪唑)及金属离子M(Ⅱ)配位,合成了12种Schiff碱类类芳香金属配合物,对这类配合物的X射线光电子能谱研究结果表明,配位后,金属离子的2p电子结合能降低,配位N原子的1s电子结合能增大;这类配全哦分子中的电荷移行径是以L→M为主,其配位键以σ键为主。 相似文献
3.
Gina Lupașcu Elena Pahonțu Sergiu Shova Ștefania Felicia Bărbuceanu Diana Carolina Ilieș Mihaela Badea Codruța Paraschivescu Cătălin Ducu Johny Neamțu Mihaela Dinu Robert Viorel Ancuceanu Doina Drăgănescu Cristina Elena Dinu-Pîrvu 《应用有机金属化学》2020,34(11):e5931
A bidentate NO donor Schiff base, 2-(((2-chloro-5- (trifluoromethyl)phenyl)imino)methyl) phenol ( HL 1 ) and its complexes [Co(L1)2(H2O)2] ( 1 ), [Cu(L1)2] ( 2 ), [Mn(L1)2(H2O)2] ( 3 ), [Ni(L1)2(H2O)2] ( 4 ), [Pd2(L1)2(OAc)2·1.16H2O] ( 5 ), [Pt(L1)2] ( 6 ) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, IR, 1H-NMR, 13C-NMR, UV–Vis, mass spectroscopies and X-ray powder diffraction (XRD). The molecular structures of ligand HL 1 and two complexes ( 2 and 5 ) were confirmed by X-ray crystallography analysis on the monocrystal. In this complexes, the metal ions are in distorted square-planar environments. The copper (II) complex is mononuclear and crystallized in a monoclinic space group P21/c, whereas palladium (II) complex is dinuclear and crystallized in the trigonal crystal system R-3. The toxicity of the ligand and complexes was evaluated on both plant and animal cells, using the plant species Triticum aestivum L. and the crustacean Artemia franciscana Kellogg. At concentrations up to 100 μM the compounds presented very little toxicity on Artemia franciscana Kellogg. Moreover, the palladium (II) complex was devoid of any toxicity on the plant cells. 相似文献
4.
基于TiO2光催化性能的染料敏化改性,采用2-噻吩甲醛缩合乙二胺合成了席夫碱配体L,并与金属配合得到了金属配合物[ZnLCl2](1),[NiL'(NO3)2](2)(L'为单噻吩醛缩乙二胺),对配体L、配合物1 和2进行了X射线单晶衍射结构分析。 用合成的配体和配合物修饰TiO2得到相应的复合光催化剂L-TiO2、1-TiO2和2-TiO2,并进行了红外光谱、紫外-可见漫反射光谱、粉末X射线衍射图谱等表征,研究了这3种光催化剂降解水中有机污染物4-硝基酚(4-NP)和罗丹明B(RhB)的催化活性。 结果表明,1-TiO2、2-TiO2可以有效的降解4-NP和RhB,降解率可达90%以上。 相似文献
5.
The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes. 相似文献
6.
Izabela Pospieszna-Markiewicz Marta A. Fik-Jaskka Zbigniew Hnatejko Violetta Patroniak Maciej Kubicki 《Molecules (Basel, Switzerland)》2022,27(23)
The new homodinuclear complexes of the general formula [Ln2L3(NO3)3] (where HL is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm3+ (1), Eu3+ (2), Tb3+ (3a, 3b), Dy3+ (4), Ho3+ (5), Er3+ (6), Tm3+ (7), Yb3+ (8)), have been synthesized from the lanthanide(III) nitrates with the polydentate hydrazone Schiff base ligand. The flexibility of this unsymmetrical Schiff base ligand containing N2O binding moiety, attractive for lanthanide metal ions, allowed for a self-assembly of these complexes. The compounds were characterized by spectroscopic data (ESI-MS, IR, UV/Vis, luminescence) and by the X-ray structure determination of the single crystals, all of which appeared to be different solvents. The analytical data suggested 2:3 metal:ligand stoichiometry in these complexes, and this was further confirmed by the structural results. The metal cations are nine-coordinated, by nitrogen and oxygen donor atoms. The complexes are two-centered, with three oxygen atoms in bridging positions. There are two types of structures, differing by the sources of terminal (non-bridging) coordination centers (group A: two ligands, one nitro anion/one ligand, two nitro anions, group B: three ligands, three anions). 相似文献
7.
Hassan Wafi Garba Muhammad Sabiu Abdullahi Mohamad Shazwan Shah Jamil Nor Azam Endot 《Molecules (Basel, Switzerland)》2021,26(19)
The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model to test the catalytic activity of copper(II) complexes containing N,O-chelating Schiff base ligands. In this study, a series of copper(II) complexes containing respective Schiff base ligands, N′-salicylidene-2-aminophenol (1), N′-salicylidene-2-aminothiazole (2), and N,N′-bis(salicylidene)-o-phenylenediamine (3), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR), UV-Visible (UV-Vis) and electron paramagnetic resonance (EPR) spectroscopies. The results from the 4-nitrophenol reduction showed that 3 has the highest catalytic activities with 97.5% conversion, followed by 2 and 1 with 95.2% and 90.8% conversions, respectively. The optimization of the catalyst amount revealed that 1.0 mol% of the catalyst was the most optimized amount with the highest conversion compared to the other doses, 0.5 mol% and 1.5 mol%. Recyclability and reproducibility tests confirmed that all three complexes were active, efficient, and possess excellent reproducibility with consistent catalytic performances and could be used again without a major decrease in the catalytic activity. 相似文献
8.
Mehmet Gülcan Mehmet Sönmez 《Phosphorus, sulfur, and silicon and the related elements》2013,188(9):1962-1971
Abstract Monobasic tridentate Schiff base ligand having ONS donor sequence was prepared by condensing N-aminopyrimidine-2-thione with o-vanillin. The complexes were formed by reacting ligand and the metal acetates of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) in methanol to get a series of mononuclear and dinuclear complexes. The characterization of ligand and metal complexes were carried out by elemental analyses, conductivity measurements, magnetic susceptibility data, FTIR, UV-vis, NMR, and API-ES mass spectral data. The structure of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, API-ES mass spectral data and thermal gravitational analysis (TGA). GRAPHICAL ABSTRACT 相似文献
9.
Valentina Iannace Dr. Ferran Sabaté Molly Bartlett Dr. Jessica Berrones Reyes Dr. Ariadna Lázaro Alessia Fantoni Prof. Ramon Vilar Prof. Laura Rodríguez Prof. Antonella Dalla Cort 《欧洲无机化学杂志》2023,26(28):e202300144
Three series of metal salophen complexes derived from Zn2+, Cu2+, Pt2+ and Ni2+ have been synthesized and their interaction with quadruplex DNA has been evaluated. The compounds differ on the number of ethyl piperidine substituents. They have been characterized by 1H NMR, IR and UV-visible spectroscopies and by HR-mass spectrometry. Their luminescent properties have been also evaluated and we can observe that, as expected, Zn2+ and Pt2+ complexes are those displaying more interesting luminescence with an emission band red-shifted with respect to the corresponding uncoordinated ligand. DNA interactions with G4 and duplex DNA were evaluated by FRET melting assays (for the Zn2+, Cu2+ and Ni2+ complexes) and by emission titrations (for one Pt2+ complex) which indicated that the disubstituted compounds 2-Ni and 2-Pt are the only ones that display good affinity for G4 DNA structures. 相似文献
10.
Dorota Kwiatek Maciej Kubicki Tomasz Toliński Stefan Lis 《Journal of Coordination Chemistry》2019,72(4):727-748
In this study, we present eight new complexes and self-assemblies of Tb(III), Eu(III), Zn(II) and Cu(II) ions with novel pyridine carboxamides, L1 [methyl 4-methyl-3-(pyridine-4-carbonylamino)benzoate] and L2 [methyl 2-methyl-3-(pyridine-4-carbonylamino)benzoate], as heterocyclic ligands. Two luminescent and spatially organized coordination compounds were obtained with the use of the solvothermal synthesis method, (1) [Tb3(L1)4(BTC)3(H2O)3] (where BTC is benzene-1,3,5-tricarboxylic acid) and (5) [Eu(L2a)3(H2O)3](H2O)4. As a result of one pot reaction synthesis under reflux the d-electron metal ions and self-organization of ligands gave complexes (2) [Zn(L1)2Cl2], (3) [Cu(L1)2(SCN)2(H2O)], (4) [Cu(L1)2Cl2], hybrid salt (6) [(CuCl4)2-(L2b)22+](H2O), (7) [Cu(L2)2Cl2] and 1D-chain coordination polymer (8) [Cu(L2)2(SCN)2]. Identification of the obtained compounds was performed on the basis of the excitation, emission, 1H NMR, FT-IR spectra, luminescence lifetimes, SEM images, PXRD, single-crystal X-ray diffraction, MS, TGA and elemental analysis. Selected compounds were also analyzed in terms of their potential magnetic properties. 相似文献
11.
Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation 下载免费PDF全文
Cobalt(II), iron(III) or oxovanadium(II) Schiff base metal complexes have been covalently grafted onto graphene oxide ( GO ) previously functionalized with 3‐aminopropyltriethoxysilane. Potential catalytic behaviors were tested in the epoxidation of styrene, using air as the oxidant. The catalysts were characterized using infrared (IR) and Raman spectroscopies, thermogravimetric analyses, inductively coupled plasma atomic emission spectrometry (ICP‐AES), X‐ray diffraction, nitrogen adsorption–desorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). IR spectroscopy, thermogravimetric analyses and ICP‐AES confirmed the successful incorporation of the metal Schiff base complexes onto GO . X‐ray diffraction, nitrogen adsorption–desorption, Raman spectroscopy, SEM and TEM showed the intact structure of the GO . Co-GO and Fe-GO showed high styrene conversion (90.8 versus 86.7%) and epoxide selectivity (63.7 versus 51.4%). Nevertheless, VO-GO showed poorer catalytic performance compared with Co-GO and Fe-GO . The recycling results of these heterogeneous catalysts showed good recoverability without significant loss of activity and selectivity within four successive runs. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
13.
Dr. Ellen F. Reid Dr. Vernon C. Cook Dr. David J. D. Wilson Dr. Conor F. Hogan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(47):15907-15917
The photophysical and related properties of platinum(II) Schiff base complexes can be finely and predictably tuned over a wide range of wavelengths by small and easily implemented changes to ligand structure. A series of such complexes, differing only in the number and positioning of methoxy substituents on the phenoxy ring, were synthesised and their photophysical, electrochemical and electrochemiluminescent (ECL) properties investigated. Theoretical calculations were performed in order to gain further insight into the relationship between structure and properties in these materials. By positioning methoxy groups para and/or ortho to either the imine or the oxygen group on the ligand, electron density could be directed selectively toward the LUMO or HOMO as required. This allowed the emission colour (both photoluminescent and electrochemiluminescent) to be tuned over a wide range between 587 and 739 nm. The variation in orbital energies was also manifested in the positions of the absorption bands and the redox properties of the complexes, as well as in the NMR shifts for the uncoordinated ligands. All reported complexes displayed intense electrochemiluminescence (ECL), which could be initiated either by annihilation or co‐reactant pathways. The relationship between the electrochemical and photophysical properties and the efficiency of the ECL is discussed. For two of the complexes solid‐state ECL could be generated from electrodeposited layers of the complex. 相似文献
14.
Marjan Abedi Ali Akbar Khandar Masoumeh Servati Gargari Atash V. Gurbanov Seyed Ali Hosseini Ghodrat Mahmoudi 《无机化学与普通化学杂志》2014,640(11):2193-2197
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure. 相似文献
15.
K. Mészáros-Szécsényi E. Z. Ivegeš V. M. Leovac A. Kovács G. Pokol Ž. K. Jaćimović 《Journal of Thermal Analysis and Calorimetry》1999,56(2):493-501
Complexes represented by the general formula [MCl2L2] (M(II)=Zn, Mn, Co) and complexes of [Cu3Cl6L4] and CuSO4L2·4H2O, CoSO4L2·3H2O, [ZnSO4L3] where L stands for 3-amino-5-methylpyrazole were prepared. The complexes were characterized by elemental analysis, FT-IR
spectroscopy, thermal (TG, DTG, DSC and EGA) methods and molar conductivity measurements. Except for the Zn-complexes, the
magnetic susceptibilities were also determined.
Thermal decomposition of the sulphato complexes of copper(II) and cobalt(II) and the chloro complexes of cobalt(II) and manganese(II)
resulted in well-defined intermediates. On the basis of the IR spectra and elemental analysis data of the intermediates a
decomposition scheme is proposed.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
16.
合成了4个含双水杨醛Schiff碱配体的双核过渡金属配合物,并通过元素分析、红外光谱、紫外光谱,热重分析以及X-射线单晶衍射等手段对所得配合物进行了表征。结果表明,配合物1、3和4都属于三斜晶系,空间群为P1,而配合物2属于单斜晶系,空间群为C2/c。在配合物1中,2个Cu髤离子具有不同的配位构型,其中一个Cu髤形成了五配位的四角锥构型,而另一个Cu髤形成了平面正方形构型。配合物4中,通过酚氧原子的桥联作用,双核单元相互连接形成了一维链状结构。 相似文献
17.
Merdivan M. Karipcin F. Kulcu N. Aygun R. S. 《Journal of Thermal Analysis and Calorimetry》1999,58(3):551-557
The thermal decompositions of the complexes of N,N-dialkyl-N'-benzoylthioureas with Cu(II), Ni(II), Pd(II), Pt(II), Cd(II), Ru(III) and Fe(III) were studied by TG and DTA techniques. These metal complexes decompose in two stages: elimination of dialkylbenzamide, and total decomposition to metal sulphides or metals. The influence of the alkyl substituents in these benzoylthiourea chelates on the thermal behaviour of the metal complexes was investigated.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
18.
AR McDonald KM Van Heuvelen Y Guo F Li EL Bominaar E Münck L Que 《Angewandte Chemie (International ed. in English)》2012,51(36):9132-9136
Nucleophilic oxidant: The reaction between a thiolato iron(II) complex 1 and superoxide in aprotic solvent at -90?°C yields a novel thiolato iron(III) peroxide intermediate 2, which exhibits unusually high nucleophilic reactivity. Compound 2 is an isomer of the thiolato iron(II) superoxide intermediate that is invoked in the reaction between superoxide reductase and superoxide. 相似文献
19.
Keiichi Satoh Toshio Suzuki Kiyoshi Sawada 《Monatshefte für Chemie / Chemical Monthly》2001,132(10):1145-1155
Summary. The molecular structures of bis-(pyridine base) complexes of cadmium(II) chloride and bromide, where the pyridine base is pyridine ( py), 3-methylpyridine (3-Me-py), 4-methylpyridine (4-Me-py), and 4-ethylpyridine (4-Et-py), were investigated by means of single-crystal X-ray diffraction and Raman spectroscopy. The crystal structures of CdCl2 py
2 (1), CdCl2(3-Me-py)2 (2), and CdCl2(4-Me-py)2 (3) were determined. All crystals are monoclinic; 1: a = 17.784(2), b = 8.666(1), c = 3.8252(7) ?, β = 91.54(1)°, space group: P21/n; 2: a = 11.89(1), b = 14.41(1), c = 3.874(6) ?, β = 92.3(1)°, space group: P21/a; 3: a = 21.091(2), b = 3.8884(5), c = 18.2317(3) ?, β = 113.64(1)°, space group: C2/c. The structures were refined to R/R
w
values (%) of 3.2/5.5, 3.0/5.0, and 3.4/5.1 for 1–3. All cadmium atoms are octahedrally coordinated with the chloride ions forming infinite di-μ-chloro polymeric linear chains
and the nitrogen atoms of the pyridine base in trans configuration. The Cd chains are oriented along the c-axis in 1 and 2 and along the b-axis in 3. The crystal structures indicate the absence of a peculiar interaction between the polymeric chains. The Raman spectra of eight complexes were measured in the range of 550–50 cm−1, and the Raman peaks originating from cadmium-halogen vibrations were assigned. The Raman spectra of 1 and 2 are quite alike in the lattice mode vibration region. The resemblance of the cadmium-halogen vibration peaks indicates the
same halogenide ion bridged octahedral structure for all complexes.
Received March 27, 2001. Accepted (revised) June 19, 2001 相似文献
20.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates 下载免费PDF全文
Dr. Apparao Draksharapu Davide Angelone Dr. Matthew G. Quesne Sandeep K. Padamati Dr. Laura Gómez Dr. Ronald Hage Prof. Dr. Miquel Costas Prof. Dr. Wesley R. Browne Dr. Sam P. de Visser 《Angewandte Chemie (International ed. in English)》2015,54(14):4357-4361
FeIII–hypohalite complexes have been implicated in a wide range of important enzyme‐catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post‐translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII‐OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo‐ESIMS. DFT methods rationalize the pathways to the formation of the FeIII‐OCl, and ultimately FeIV?O, species and provide indirect evidence for a short‐lived FeII‐OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. 相似文献