首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ru(II) heteroleptic complexes as photosensitizers for dye-sensitized solar cells (DSCs) are presented. The article outlines design strategies, synthetic routes, optical and photovoltaic properties of ruthenium dyes based on polypyridines as ancillary ligands containing π-conjugated electron-rich heteroaromatic groups. The integration of donor heteroaromatic substituents, typically thiophene-based moieties, strongly improves the optical properties of the sensitizers in terms of bathochromic and hyperchromic shift compared to prototypical dyes N3 and N719. These favorable properties in turn yield DSCs with superior light harvesting abilities, higher external quantum efficiencies, improved device photocurrents, and top-ranked power conversion efficiencies. In combination with excellent stabilities under thermal stress and light soaking, this class of DSC photosensitizer has great potential for practical applications.  相似文献   

2.
Naphthalene diimides (NDIs) are promising candidate for electron acceptors due to their low-lying HOMOs and LUMOs. The functinalization of soluble NDIs at the 2,6-position affects the absorption and electrochemical properties. In this study, NDI-based hybrid dyes NDI-SQ-A, B fused with squaraine chromophore were designed and synthesized in order to elucidate the effects of the substitution on their optical and electrochemical properties. These dyes were successfully synthesized by Stille coupling reactions using 3-stannylcyclobutenediones and brominated NDI derivative, followed by a condensation reaction. DFT calculation predicts that the present dyes adopt distorted structures coming from a steric hindrance between semisquaraine and NDI moieties. The hybrid dyes show low-lying LUMOs due to the introduction of electron-deficient NDI moiety and broad absorption spectra in the far-red region. The absorption spectra of their thin films were bathochromically shifted relative to those in solution, indicating that hybrid dyes formed J aggregates.  相似文献   

3.
Fluorescence imaging is one of the most powerful techniques for monitoring biomolecules in living systems. Fluorescent sensors with absorption and emission in the near-infrared (NIR) region are favorable for biological imaging applications in living animals, as NIR light leads to minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have introduced a new strategy to design NIR functional dyes with the carboxylic-acid-controlled fluorescence on-off switching mechanism by the spirocyclization. Based on the design strategy, we have developed a series of Changsha (CS1-6) NIR fluorophores, a unique new class of NIR functional fluorescent dyes, bearing excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, high brightness, good photostability, and sufficient chemical stability. Significantly, the new CS1-6 NIR dyes are superior to the traditional rhodamine dyes with both absorption and emission in the NIR region while retaining the rhodamine-like fluorescence ON-OFF switching mechanism. In addition, we have performed quantum chemical calculations with the B3LYP exchange functional employing 6-31G* basis sets to shed light on the structure-optical properties of the new CS1-6 NIR dyes. Furthermore, using CS2 as a platform, we further constructed the novel NIR fluorescent TURN-ON sensor 7, which is capable of imaging endogenously produced HClO in the living animals, demonstrating the value of our new CS NIR functional fluorescent dyes. We expect that the design strategy may be extended for development of a wide variety of NIR functional dyes with a suitable fluorescence-controlled mechanism for many useful applications in biological studies.  相似文献   

4.
Perylene bisimides are among the most valuable functional dyes and have numerous potential applications. As a result of their chemical robustness, photostability, and outstanding optical and electronic properties, these dyes have been applied as pigments, fluorescence sensors, and n‐semiconductors in organic electronics and photovoltaics. Moreover, the extended quadrupolar π system of this class of dyes has facilitated the construction of numerous supramolecular architectures with fascinating photophysical properties. However, the supramolecular approach to the formation of perylene bisimide aggregates has been restricted mostly to organic media. Pleasingly, considerable progress has been made in the last few years in developing water‐soluble perylene bisimides and their application in aqueous media. This Review provides an up‐to‐date overview on the self‐assembly of perylene bisimides through π–π interactions in aqueous media. Synthetic strategies for the preparation of water‐soluble perylene bisimides and the influence of water on the π–π stacking of perylene bisimides as well as the resulting applications are discussed.  相似文献   

5.
《化学:亚洲杂志》2017,12(2):233-238
Unsymmetrical cyanine dyes, such as thiazole orange, are useful for the detection of nucleic acids with fluorescence because they dramatically enhance the fluorescence upon binding to nucleic acids. Herein, we synthesized a series of unsymmetrical cyanine dyes and evaluated their fluorescence properties. A systematic structure–property relationship study has revealed that the dialkylamino group at the 2‐position of quinoline in a series of unsymmetrical cyanine dyes plays a critical role in the fluorescence enhancement. Four newly designed unsymmetrical cyanine dyes showed negligible intrinsic fluorescence in the free state and strong fluorescence upon binding to double‐stranded DNA (dsDNA) with a quantum yield of 0.53 to 0.90, which is 2 to 3 times higher than previous unsymmetrical cyanine dyes. A detailed analysis of the fluorescence lifetime revealed that the dialkylamino group at the 2‐position of quinoline suppressed nonradiative decay in favor of increased fluorescence quantum yield. Moreover, these newly developed dyes were able to stain the nucleus specifically in fixed HeLa cells examined by using a confocal laser‐scanning microscope.  相似文献   

6.
In this work, three new tripodal triphenylamine dyes are presented that are capable of reversibly binding amines and diamines to form hemiaminals through a covalent bond. The dyes were synthesized by the Heck reaction and possess stilbene units with one, two, or three trifluoroacetyl groups as receptor moieties. Their interaction with amines and diamines led to changes in their absorption and emission properties, which were detected by UV/Vis and fluorescence spectroscopy. The influence of the number of trifluoroacetyl receptor moieties on the selectivity and sensitivity of the dyes was studied. Enhanced sensitivity and selectivity for diaminoalkanes was found for the dye we have labeled Tripod-1, with three chemically reactive trifluoroacetyl groups, related to only one or two trifluoroacetyl groups in the dye molecule.  相似文献   

7.
Small‐molecule organic fluorophores spectrally active in the 800–950 nm region are sought‐after for their broad potential in biomedical and material applications. We have developed a new family of brightly fluorescent dyes ( ECX ) to meet this challenge. ECX dyes are transparent to the visible region, while strongly absorbing in the NIR region at approximately 880 nm. They emit at around 915 nm with a fluorescence quantum yield up to 13.3 %. ECX dyes exhibit high chemostability, high photostability, and low tendency to aggregate. Other merits of ECX dyes include low degree of solvatochromism and facile post‐synthetic derivatization. ECX dyes potentially make available the 800–950 nm region for spectroscopic and microscopic applications and are also expected to find broad material applications.  相似文献   

8.
Novel monomethine 2a‐f , dimethine 4a‐f and tetramethine 6a‐h cyanine dyes were prepared as conjugated dyes. Such dyes incorporating coumarin and/or quinoline derivatives 1a‐d . These dyes were synthesized to study their spectral behavior, solvatochromism and biological activity. These dyes are characterized by elemental analysis, IR, 1H NMR and mass‐spectra.  相似文献   

9.
Small‐molecule organic fluorophores spectrally active in the 800–950 nm region are sought‐after for their broad potential in biomedical and material applications. We have developed a new family of brightly fluorescent dyes ( ECX ) to meet this challenge. ECX dyes are transparent to the visible region, while strongly absorbing in the NIR region at approximately 880 nm. They emit at around 915 nm with a fluorescence quantum yield up to 13.3 %. ECX dyes exhibit high chemostability, high photostability, and low tendency to aggregate. Other merits of ECX dyes include low degree of solvatochromism and facile post‐synthetic derivatization. ECX dyes potentially make available the 800–950 nm region for spectroscopic and microscopic applications and are also expected to find broad material applications.  相似文献   

10.
Fluorescent probes are of increasing interest in medicinal and biological applications for the elucidation of the structures and functions of healthy as well as tumour cells. The quality of these investigations is determined by the intensity of the fluorescence signal. High dye/carrier ratios give strong signals. However, these are achieved by the occupation of a high number of derivatisation sites and therefore are accompanied by strong structural alterations of the carrier. Hence, polyvalent substances containing a high number of fluorescent dyes would be favourable because they would allow the introduction of many dyes at one position of the compound to be labelled.A large number of different dyes have been investigated to determine the efficiency of coupling to a dendrimer scaffold and the fluorescence properties of the oligomeric dyes, but compounds that fulfil the requirements of both strong fluorescence signals and reactivities are rare. Herein we describe the synthesis and characterisation of dye oligomers containing dansyl-, 7-nitro-2,1,3-benzoxadiazol-4-yl- (NBD), coumarin-343, 5(6)-carboxyfluorescein and sulforhodamine B2 moieties based on polyamidoamine (PAMAM) dendrimers. The PAMAM dendrimers were synthesised by an improved protocol that yielded highly homogeneous scaffolds with up to 128 conjugation sites. When comparing the fluorescent properties of the dye oligomers it was found that only the dansylated dendrimers met the requirements of enhanced fluorescence signals. The dendrimer containing 16 fluorescent dyes was conjugated to the anti-epidermal-growth-factor receptor (EGFR) antibody hMAb425 as a model compound to show the applicability of the dye multimer compounds. This conjugate revealed a preserved immunoreactivity of 54%.We demonstrate the applicability of the dye oligomers to the efficient and applicable labelling of proteins and other large molecules that enables high dye concentrations and therefore high contrasts in fluorescence applications.  相似文献   

11.
The very concept of dye and pigment chemistry that was long known to the industrial world underwent a radical revision after the discovery and commercialization of dyes such as mauveine, indigo, and so on. Apart from their conventional role as coloring agents, organic dyes, and pigments have been identified as indispensable sources for high-end technological applications including optical and electronic devices. Simultaneous with the advancement in the supramolecular chemistry of π-conjugated systems and the divergent evolution of organic semiconductor materials, several dyes, and pigments have emerged as potential candidates for contemporary optoelectronic devices. Of all the major pigments, diketopyrrolopyrrole (DPP) better known as the ‘Ferrari Pigment’ and its derivatives have emerged as a major class of organic functional dyes that find varied applications in fields such as industrial pigments, organic solar cells, organic field–effect transistors, and in bioimaging. Since its discovery in 1974 by Farnum and Mehta, DPP-derived dyes gained rapid attention because of its attractive color, synthetic feasibility, ease of functionalization, and tunable optical and electronic properties. The advancement in supramolecular polymerization of DPP-based small molecules and oligomers with directed morphological and electronic features have led to the development of high performing optoelectronic devices. In this review, we highlight the recent developments in the optoelectronic applications of DPP derivatives specifically engineered to form supramolecular polymers.  相似文献   

12.
Biocompatible hydrogels are of high interest as a class of biomaterials for tissue engineering, regenerative medicine, and controlled drug delivery. These materials offer three-dimensional scaffolds to support the growth of cells and development of hierarchical tissue structures. Fmoc-peptides were previously demonstrated as attractive building blocks for biocompatible hydrogels. Here, we further investigate the biophysical properties of Fmoc-peptide-based hydrogels for medical applications. We describe the structural and thermal properties of these Fmoc-peptides, as well as their self-assembly process. Additionally, we study the role of interactions between aromatic moieties in the self-assembly process and on the physical and structural properties of the hydrogels.  相似文献   

13.
Rylene imide dyes have been among the most promising organic semiconducting materials for several years due to their remarkable optoelectronic properties and high chemical/thermal stability. In the past decades, various excellent rylene imide dyes have been developed for optoelectronic devices, such as organic solar cells (OSCs) and organic field‐effect transistors (OFETs). Recently, tremendous progress of perylene diimides (PDIs) and their analogues for use in OSCs has been achieved, which can be attributed to their ease of functionalization. In this review, we will mainly focus on the synthetic strategies toward to latest PDI dyes and higher rylene imide analogues. A variety of compounds synthesized from different building blocks are summarized, and some properties and applications are discussed.  相似文献   

14.
15.
Charge-transfer emitters are attractive due to their color tunability and potentially high photoluminescence quantum yields (PLQYs). We herein present tetraaminospirenes as donor moieties, which, in combination with a variety of acceptors, furnished 12 charge-transfer emitters with a range of emission colors and PLQYs of up to 99 %. The spatial separation of their frontier molecular orbitals was obtained through careful structural design, and two DA structures were confirmed by X-ray crystallography. A range of photophysical measurements supported by DFT calculations shed light on the optoelectronic properties of this new family of spiro-NN-donor-acceptor dyes.  相似文献   

16.
We recently reported that fluorescent dye PB430, which consisted of a 2‐phenyl‐substituted benzophosphole P‐oxide skeleton that was reinforced by a methylene bridge, showed pronounced photostability and, thus, high utility for applications in super‐resolution stimulated emission depletion (STED) microscopy. Herein, we replaced the methylene bridge with another P=O group to 1) investigate the role of the bridging moieties; and 2) further modulate the fluorescence properties of this skeleton. We synthesized a series of phospholo[3,2‐b]phosphole‐based dyes—trans‐PO‐PB430, cis‐PO‐PB430, and trans‐PO‐PB460—all of which showed sufficient water solubility. Moreover, trans‐PO‐PB430 and trans‐PO‐PB460 exhibited intense green and orange fluorescence, respectively, and a high photostability that was comparable to that of PB430. In contrast, cis‐PO‐PB430 underwent rapid photobleaching upon continuous photoirradiation, which demonstrated the importance of steric shielding of the polycyclic skeleton by the substituents on the bridging moieties. The fluorescence properties of these dyes were insensitive to concentration, pH value, and polarity changes of the environment in solution. In addition, even in the solid state, these dyes showed strong green to orange emissions. These results demonstrate the potential utility of trans‐PO‐PB430 and trans‐PO‐PB460 as highly photostable fluorescent dyes.  相似文献   

17.
A series of novel polyfunctionalized acyclic and heterocyclic dye precursors and their respective azo (hydrazone) counterpart dyes and dye precursors based on conjugate enaminones and/or enaminonitrile moieties were synthesized. The dyes and their precursors are based on 2-cyano-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-acetamide, 2-ethoxycarbonyl-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-acetamide or 2-phenylcarbamoyl-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-acetamide systems as precursors. The latter compounds were used to synthesize polyfunctional thiophene-, thiazole-, pyrazole, pyridine-, pyrimidine-, oxazine-, as well as acyclic moieties. The dyes and dye precursors were characterized by elemental analysis and spectral methods. All dyes and their precursors were screened in vitro and evaluated for both their antibacterial and antifungal activities. MIC data of the novel dye systems and their respective precursors showed significant antimicrobial activity against most tested organisms. Some compounds exhibited comparable or even higher efficiency than selected standards. Dyes were applied at 5% depth for disperse dyeing of nylon, acetate and polyester fabrics. Their spectral characteristics and fastness properties were measured and evaluated.  相似文献   

18.
Polyethylene glycol (PEG) is a polymer that is widely used as a carrier for drug delivery systems (DDS). A library of N-PEGylated quinoline derivatives of PEG molecular weight 200 was prepared rapidly after the activation of PEGs using maleic anhydride. Quinoline with a polymer backbone is essential as new material. PEG is a water-soluble nonionic polymer approved by food and drug organizations for medicine applications. Because of its nontoxic grapheme, it is widely utilized in numerous biochemical, cosmetic, pharmaceutical, and industrialized applications. The modern SwissADME is a web tool that stretches free admittance to a pool of hasty, yet solid, clarifying models for physicochemical properties, pharmacokinetics, and therapeutic science. The present facile synthetic strategy can be a practical approach for incorporating polymeric carriers conjugated with drug moieties, either in the backbone of the polymer or as a terminal and pendant group on the polymer chains.  相似文献   

19.
双光子荧光染料分子在生物医学成像中具有广阔的应用前景,但取代效应对分子结构以及光物理性质影响的探求相对匮乏.本文设计并研究了一系列脂滴检测染料分子,分析了分子的光学性质以及无辐射跃迁等.通过分子内弱相互作用和电子-空穴布居分析,阐述了其内在机理.结果表明,所研究的分子均具有优良的光物理性能、高效荧光量子产量、大的斯托克斯位移以及显著的双光子吸收截面等.本工作合理地解释了实验现象并阐述了取代效应对脂滴检测NAPBr染料分子的双光子吸收和激发态性质的影响,这为设计新型的高效有机分子提供了理论指导.  相似文献   

20.
Dynamics of trans-cis photoisomerization of novel hetarylazo dyes containing hydrogenated quinoline and triazole or tetrazole moieties has been studied by femtosecond laser photolysis with spectrophotometric detection. For all the dyes under study, the absorbance dynamics after photoexcitation in the long-wavelength absorption band (λpump = 550 nm) is described by three fast processes with characteristic times of 0.07–0.27, 0.4–1.0, and 3–7 ps. The effect of the solvent and the azo dye structure on the dynamics of transient species has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号