首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure-integrated modulation concept was presented, to unlock the omnidirectional storage kinetics-enhanced porous VSe2−xn H2O host. Theory research indicated that the co-modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption-intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all-climate high-performance Zn-ion batteries.  相似文献   

2.
Cu−Li batteries leveraging the two-electron redox property of Cu can offer high energy density and low cost. However, Cu−Li batteries are plagued by limited solubility and a shuttle effect of Cu ions in traditional electrolytes, which leads to low energy density and poor cycling stability. In this work, we rationally design a solid-state sandwich electrolyte for solid-state Cu−Li batteries, in which a deep-eutectic-solvent gel with high Cu-ion solubility is devised as a Cu-ion reservoir while a ceramic Li1.4Al0.4Ti1.6(PO4)3 interlayer is used to block Cu-ion crossover. Because of the high ionic conductivity (0.55 mS cm−1 at 25 °C), wide electrochemical window (>4.5 V vs. Li+/Li), and high Cu ion solubility of solid-state sandwich electrolyte, a solid-state Cu−Li battery demonstrates a high energy density of 1 485 Wh kgCu−1and long-term cyclability with 97 % capacity retention over 120 cycles. The present study lays the groundwork for future research into low-cost solid-state Cu−Li batteries.  相似文献   

3.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

4.
The novel functionalized porphyrin [5,15‐bis(ethynyl)‐10,20‐diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy‐storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy‐storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge–discharge rates up to 53 C and a specific energy density of 345 Wh kg−1 at a specific power density of 29 kW kg−1. Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg−1. Whereas the capacity is in the range of that of ordinary lithium‐ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability.  相似文献   

5.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   

6.
Aqueous copper metal batteries with acidic electrolytes are regarded as promising candidates for low-temperature energy storage, benefiting from fast kinetics of protons and acid resistance of copper. Here, a Cu(BF4)2 electrolyte that spontaneously generates protons is developed for ultralow-temperature copper metal batteries. Systematic studies demonstrate that the hydrolysis of BF4 generates more protons, rendering the Cu(BF4)2 among the most effective aqueous electrolyte capable of breaking hydrogen bonds in water molecules. This electrolyte endows a polyaniline/Cu battery to deliver a short charging time of 21 s and a charge/discharge capability of up to 10 A g−1 at −30 °C, along with a high discharge specific capacity of 70 mAh g−1 and a supercapacitor-comparable power density of 3000 W kg−1. Furthermore, it can exhibit a long and stable cycling lifespan over 10 000 cycles at −50 °C and works well at −70 °C. This work provides an opportunity for intrinsically acidic electrolytes.  相似文献   

7.
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2’,3’-c] phenazine (HATN) anode and a MnO2@graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2@GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g−1 at 0.5 A g−1, 97 mAh g−1 at 50 A g−1), attractive energy density (182.1 Wh kg−1) and power density (31.2 kW kg−1), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.  相似文献   

8.
The high theoretical energy density (1274 Wh kg−1) and high safety enable the all-solid-state Na−S batteries with great promise for stationary energy storage system. However, the uncontrollable solid–liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na−S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full Na2S4 to Na2S low-kinetic conversion during discharging. The electrodeposited Na2S on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S8 without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na−S pouch cells with an attractive specific capacity of 876 mAh gS−1 and a high energy of 608 Wh kgcathode−1 (172 Wh kg−1, based on the total mass of cathode and anode) at 60 °C are demonstrated.  相似文献   

9.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

10.
In this work, the ternary hybrid structure VSe2/SWCNTs/rGO is reported for supercapacitor applications. The ternary composite exhibits a high specific capacitance of 450 F g−1 in a symmetric cell configuration, with maximum energy density of 131.4 Wh kg−1 and power density of 27.49 kW kg−1. The ternary hybrid also shows a cyclic stability of 91 % after 5000 cycles. Extensive density functional theory (DFT) simulations on the structure as well as on the electronic properties of the binary hybrid structure VSe2/SWCNTs and the ternary hybrid structure VSe2/SWCNTs/rGO have been carried out. Due to a synergic effect, there are enhanced density of states near the Fermi level and higher quantum capacitance for the hybrid ternary structure compared to VSe2/SWCNTs, leading to higher energy and power density for VSe2/SWCNTs/rGO, supporting our experimental observation. Computed diffusion energy barrier of electrolyte ions (K+) predicts that ions move faster in the ternary structure, providing higher charge storage performance.  相似文献   

11.
Potassium-ion batteries (PIBs) are promising for cryogenic energy storage. However, current researches on low-temperature PIBs are limited to half cells utilizing potassium metal as an anode, and realizing rechargeable full cells is challenged by lacking viable anode materials and compatible electrolytes. Herein, a hard carbon (HC)-based low-temperature potassium-ion full cell is successfully fabricated for the first time. Experimental evidence and theoretical analysis revealed that potassium storage behaviors of HC anodes in the matched low-temperature electrolyte involve defect adsorption, interlayer co-intercalation, and nanopore filling. Notably, these unique potassiation processes exhibited low interfacial resistances and small reaction activation energies, enabling an excellent cycling performance of HC with a capacity of 175 mAh g−1 at −40 °C (68 % of its room-temperature capacity). Consequently, the HC-based full cells demonstrated impressive rechargeability and high energy density above 100 Wh kg−1cathode at −40 °C, representing a significant advancement in the development of PIBs.  相似文献   

12.
Biomass derived carbon materials are widely available, cheap and abundant resources. The application of these materials as electrodes for rechargeable batteries shows great promise. To further explore their applications in energy storage fields, the structural design of these materials has been investigated. Hierarchical porous heteroatom-doped carbon materials (HPHCs) with open three-dimensional (3D) nanostructure have been considered as highly efficient energy storage materials. In this work, biomass soybean milk is chosen as the precursor to construct N, O co-doped interconnected 3D porous carbon framework via two approaches by using soluble salts (NaCl/Na2CO3 and ZnCl2/Mg5(OH)2(CO3)4, respectively) as hard templates. The electrochemical results reveal that these structures were able to provide a stable cycling performance (710 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 300 cycles for HPHC-a, and 610 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 200 cycles for HPHC-b) in Li-ion battery and Na-ion storage (210 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 900 cycles for HPHC-a) as anodes materials, respectively. Further comparative studies showed that these improvements in HPHC-a performance were mainly due to the honeycomb-like structure containing graphene-like nanosheets and high nitrogen content in the porous structures. This work provides new approaches for the preparation of hierarchically structured heteroatom-doped carbon materials by pyrolysis of other biomass precursors and promotes the applications of carbon materials in energy storage fields.  相似文献   

13.
Compared to the traditional transition metal layered double hydroxides, transition metal layered carbonate double hydroxides (TMC-LDHs) possess superior electrochemical performance in theory. But TMC-LDHs have not received its deserved attention, especially for application in the energy storage field. In this work, a flower-like TMC-LDH (Ni0.75Co0.25(CO3)0.125(OH)2, NCCO) material was successfully prepared by hydrothermal method, which exhibits a high specific capacity of 306.8 mAh g−1 (0.52 mAh cm−2) at 0.5 A g−1 with capacity retention of 70.5 % after 2000 cycles. The solid-state hybrid supercapacitor device NCCO//PVA/KOH//IHPC based on the prepared NCCO material and an interconnected hierarchical porous carbon (IHPC) delivers a high specific energy of 50.96 Wh kg−1 at a specific power of 1.06 kW kg−1, and a high specific energy of 36.39 Wh kg−1 still can be delivered at a high specific power of 10.49 kW kg−1. More than 181.2 % of initial specific capacity is retained after 12000 cycles. The specific energy, energy retention under large specific power, and the cycle stability of the assembled device are better than most of the solid-state hybrid supercapacitors that have been reported. These results demonstrate the promising prospect of the TMC-LDH material in the practical application in advanced solid-state supercapacitors.  相似文献   

14.
《先进技术聚合物》2018,29(6):1697-1705
Nanocomposites of gold nanoparticles and polyaniline are synthesized by using HAuCl4 and ammonium peroxydisulfate as the co‐oxidant involving in situ polymerization of aniline and in situ reduction of HAuCl4. Through these in situ methods, the synthesized Au nanoparticles of ca. 20 nm embedded tightly and dispersed uniformly in polyaniline backbone. With the Au content in composite increasing from 4.20 to 24.72 wt.%, the specific capacitance of the materials first increased from 334 to 392 F g−1 and then decreased to 298 F g−1. Based on the real content of PANI in composite material, the highest specific capacitance is calculated to be 485 F g−1 at the Au amount of 19.15 wt.%, which remains 55.6% after 5000 cycles at the current density of 2 A g−1. Finally, the asymmetric supercapacitor of AuNP/PANI||AC and the symmetric supercapacitor of AuNP/PANI||AuNP/PANI are assembled. The asymmetric supercapacitor device shows a better electrochemical performance, which delivers the maximum energy density of 7.71 Wh kg−1 with power density of 125 W kg−1 and maximum power density of 2500 W kg−1 with the energy density of 5.35 Wh kg−1.  相似文献   

15.
Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2-based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries.  相似文献   

16.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li−S batteries.  相似文献   

17.
Here, we report a two-phase crystalline NiWO4/amorphous Co−B nanocomposite as an electrode material for supercapacitors, which is effectively synthesized via a simple hydrothermal method and chemical precipitation method. The obtained NiWO4/Co−B exhibits crystal-amorphous contact, which makes it have more active sites than other crystalline-crystalline phase boundaries, thereby enhancing electron transport. The NiWO4/Co−B electrode with the best mass ratio of crystalline and amorphous exhibits a great specific capacitance and excellent cycle durability. Compared to individual Co−B and NiWO4, it also shows enhanced rate capability Besides, NiWO4/Co−B/activated carbon supercapacitor device can provide a good specific capacitance and a maximum energy density of 10.92 Wh kg−1 at 200 W kg−1. This work provides new insights to develop novel electrode materials for energy storage and conversion.  相似文献   

18.
Aqueous Zn−Mn battery has been considered as the most promising scalable energy-storage system due to its intrinsic safety and especially ultralow cost. However, the traditional Zn−Mn battery mainly using manganese oxides as cathode shows low voltage and suffers from dissolution/disproportionation of the cathode during cycling. Herein, for the first time, a high-voltage and long-cycle Zn−Mn battery based on a highly reversible organic coordination manganese complex cathode (Manganese polyacrylate, PAL−Mn) was constructed. Benefiting from the insoluble carboxylate ligand of PAL−Mn that can suppress shuttle effect and disproportionationation reaction of Mn3+ in a mild electrolyte, Mn3+/Mn2+ reaction in coordination state is realized, which not only offers a high discharge voltage of 1.67 V but also exhibits excellent cyclability (100 % capacity retention, after 4000 cycles). High voltage reaction endows the Zn−Mn battery high specific energy (600 Wh kg−1 at 0.2 A g−1), indicating a bright application prospect. The strategy of introducing carboxylate ligands in Zn−Mn battery to harness high-voltage reaction of Mn3+/Mn2+ well broadens the research of high-voltage Zn−Mn batteries under mild electrolyte conditions.  相似文献   

19.
Zinc-ion batteries are regarded as an extremely promising candidate for large-scale energy storage equipment due to the inexpensive ingredients and high safety. However, dendrite growth and side reactions occur in the Zn anode, which lead to exceedingly low coulombic efficiency (CE) and poor cycling stability. In this work, we propose a strategy of a conductive/insulating bi-functional coating layer (CIBL) for stable Zn metal anodes. Porous Ag nanowires (NWs) coating as a conductive layer effectively reduces the nuclear barrier and contains Zn2+ deposition in a certain space. Polyimide (PI) coatings as insulating layer implement a shunting effect on Zn2+, which could reduce the differential concentration on the Zn surface and induce uniform deposition of Zn2+. Therefore, the CIBL−Zn//CIBL−Zn battery achieves stable plating/stripping of over 1300 h at 1 mA cm−2. The CE of CIBL−Zn//CIBL−Zn battery maintains at 99.2 % even after 1000 cycles. Moreover, the CIBL−Zn//V2O5 battery exhibits a capacity of nearly 289.2 mA h g−1 at 5 A g−1 after 3000 cycles and no sign of capacity degradation is found, which further demonstrate the feasibility of this strategy in practical application.  相似文献   

20.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号