首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotaxane building blocks bearing 3,5-bis(trifluoromethyl) benzenesulfonate (BTBS) stoppers have been efficiently prepared from a pillar[5]arene derivative, 3,5-bis(trifluoromethyl) benzenesulfonyl chloride (BTBSCl) and different diols, namely 1,10-decanediol and 1,12-dodecanediol. The BTBS moieties of these compounds are good leaving groups and stopper exchange reactions could be achieved by treatment with different nucleophiles thus affording rotaxanes with ester, thioether or ether stoppers.  相似文献   

2.
Transformation of a methylene group of the pillar[5]arene scaffold into a ketone has been achieved by treatment with N‐bromosuccinimide followed by hydrolysis of the bromide intermediate and oxidation of the resulting secondary benzylic alcohol with BaMnO4. Condensation of the resulting macrocycle including a ketone function with p‐toluenesulfonyl hydrazide followed by reaction of the corresponding tosylhydrazone with C60 under modified Bamford–Stevens conditions gave a fulleropillar[5]arene derivative. This building block has been used to prepare a rotaxane. The resulting molecule combining the fullerene‐functionalized macrocycle with an axle bearing a porphyrin stopper is a photoactive molecular device in which the porphyrin emission is efficiently quenched by the fullerene moiety.  相似文献   

3.
Macromolecular [2]rotaxanes comprising a polymer axle and crown ether wheel were synthesized to evaluate the effect of component mobility on the properties of the axle polymer, especially its crystallinity. Living ring‐opening polymerization of δvalerolactone with a pseudorotaxane initiator with a hydroxy group at the axle terminus was followed by end‐capping with a bulky isocyanate. This yielded macromolecular [2]rotaxanes (M2Rs) possessing polyester axles of varying molecular weights. The crystallinity of the axle polymers of two series of M2Rs, with either fixed and movable components, was evaluated by differential scanning calorimetry. The results revealed that the effect of component mobility was significant in the fixed and movable M2Rs with a certain axle length, thus suggesting that the properties of the axle polymer depend on the mobility of the polyrotaxane components.  相似文献   

4.
Amphiphilic pillar[5]arene‐containing [2]rotaxanes have been prepared and fully characterized. In the particular case of the [2]rotaxane incorporating a 1,4‐diethoxypillar[5]arene subunit, the structure of the compound was confirmed by X‐ray crystal structure analysis. Owing to a good hydrophilic/hydrophobic balance, stable Langmuir films have been obtained for these rotaxanes and the size of the peripheral alkyl chains on the pillar[5]arene subunit has a dramatic influence on the reversibility during compression–decompression cycles. Indeed, when these are small enough, molecular reorganization of the rotaxane by gliding motions are capable of preventing strong π–π interactions between neighboring macrocycles in the thin film.  相似文献   

5.
介绍了柱[5]芳烃基于主客体性质和柱状立体结构的超分子组装,以及边缘取代基对柱[5]芳烃的溶解性、功能性和主客体性质的影响。  相似文献   

6.
刘硕  王晓静  韩杰 《化学教育》2017,38(6):22-25
合成了1,4-二甲氧基柱[5]芳烃(DMP[5]),采用核磁滴定方法研究了主体分子DMP[5]与客体分子1,6-己二胺的包结作用。通过摩尔比方法确定了主客体分子间的包结比为1∶1,并利用DynaFit计算了包结常数Ka=49 L/mol。本实验可作为有机化学实验在本科生化学及相关专业开设,有利于学生了解超分子化学前沿知识,激发学习兴趣,培养综合实验能力和科研方法。  相似文献   

7.
随着大环化学的快速发展,对杯芳烃、柱芳烃及其他类似化合物的桥梁亚甲基部位进行高效修饰的方法日益引起人们的关注.桥梁部位修饰后的大环衍生物,在不改变其原有属性的基础上增加了新的功能,不仅可以引入更多的功能基团,而且可以通过主客体的自组装行为,进一步拓展杯芳烃和柱芳烃等超分子大环在药物递送、化学传感、荧光体系构建等诸多领域...  相似文献   

8.
综述了近四年来新型超分子主体化合物柱芳烃的合成、发展和应用.其中,柱芳烃及其衍生物的合成主要有两种有机化学合成策略,即"先成环后修饰"和"先修饰后成环".由于这类新型主体化合物具有非常特殊的空间结构和理化性质,目前,它主要应用在主客体包合与分子识别、自组装体系的构筑和智能材料等领域.  相似文献   

9.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   

10.
Synthesis of Cucurbit[5]uril-Spermine-[2]Rotaxanes   总被引:1,自引:0,他引:1  
Cucurbit[5]uril and decamethylcucurbit[5]uril are cyclic pentamers built from glycoluril or dimethylglycoluril respectively. Two different experimental methods have been used for the synthesis of the different [2]rotaxanes. The formed rotaxanes are characterized using 1H-NMR spectroscopy, mass spectrometry and elemental analysis. In contrast to cucurbit[5]uril no [2]rotaxane could be obtained with decamethylcucurbit[5]uril.  相似文献   

11.
We report tunable supramolecular self‐assemblies formed by water‐soluble pillar[n]arenes ( WPn s, n=5–7) and bipyridinium‐azobenzene guests. Nanoscale or microscale morphology of self‐assemblies in water was controlled by the host size of WPn . Supramolecular self‐assemblies could undergo morphology conversion under irradiation with UV light.  相似文献   

12.
Towards polythiophene polyrotaxanes : The β‐substituted terthiophene [2]rotaxanes have been synthesized (see figure). Basic optical and electrochemical properties of the synthesized [2]rotaxanes are also reported.

  相似文献   


13.
A series of [4]pseudorotaxanes composed of three-way axle threads based on the cyclotriguaiacylene family of crown-shaped cavitands and three threaded macrocyclic components has been achieved. These exploit the strong affinity for electron-poor alkyl-pyridinium units to reside within the electron-rich cavity of macrocycles, in this case dimethoxypillar[5]arene (DMP). The branched [4]pseudorotaxane assemblies {(DMP)3?L}3+,where L = N-alkylated derivatives of the host molecule (±)-tris-(isonicotinoyl)cyclotriguaiacylene, were characterised by NMR spectroscopy and mass spectrometry, and an energy-minimised structure of {(DMP)3?(tris-(N-propyl-isonicotinoyl)cyclotriguaiacylene)}3+ was calculated. Crystal structures of N-ethyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate and N-propyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate each show ‘hand-shake’ self-inclusion motifs occurring between the individual cavitands.  相似文献   

14.
吴明港  杨勇  薛敏 《化学学报》2022,80(8):1057-1060
构象固定的刚性多环主体分子为构筑高级复杂的机械互锁结构提供了重要平台. 为挑战合成刚性多环主体并进一步构筑多层次机械互锁结构, 氧杂杯[4]芳烃桥连的柱[5]芳烃二聚体经过Raney Ni催化氢化还原硝基、与叔丁氧羰基(Boc)-β-丙氨酸缩合和脱去N-Boc保护基三步反应, 生成了四氨基柱[5]芳烃二聚体. X射线单晶衍射实验表明三环目标主体分子具有双桶望远镜形状, 并且构象刚性, 随取代基不同仅有微小变化. 此外, 该四氨基二聚体可作为主体与己二腈形成高稳定性的1∶2络合物. 该研究为制备复杂超分子体系提供了新的机会.  相似文献   

15.
Despite the fact that pillar[n]arenes receive major interest as building blocks for supramolecular chemistry and advanced materials, their functionalization is generally limited to the modification of the hydroxy or alkoxy units present on the rims. This limited structural freedom restricts further developments and has very recently been overcome. In this article, we highlight three very recent studies demonstrating further structural diversification of pillar[n]arenes by partial removal of the alkoxy substituents on the rims, which can be considered as the next generation of pillar[n]arenes.  相似文献   

16.
Bistable [2]rotaxanes have been attached through a bulky tripodal linker to the surface of titanium dioxide nanoparticles and studied by cyclic voltammetry and spectroelectrochemical methods. The axle component in the [2]rotaxane contains two viologen sites, V1 and V2, interconnected by a rigid terphenylene bridge. In their parent dication states, V12+ and V22+ can both accommodate a crown ether ring, C, but are not equivalent in terms of their affinity towards C and have different electrochemical reduction potentials. The geometry and size of the tripodal linker help to maintain a perpendicular [2]rotaxane orientation at the surface and to avoid unwanted side‐to‐side interactions. When the rigid [2]rotaxane or its corresponding axle are adsorbed on a TiO2 nanoparticle, viologen V22+ is reduced at significantly more negative potentials (?0.3 V) than in flexible analogues that contain aliphatic bridges between V1 and V2. These overpotentials are analysed in terms of electron‐transfer rates and a donor–bridge–acceptor (D–B–A) formalism, in which D is the doubly reduced viologen, V10, adjacent to the TiO2 surface (TiO2–V10), B is the terphenylene bridge and A is viologen V22+. We have also found that, in contrast with earlier findings in solution, no molecular shuttling occurs in rigid [2]rotaxane adsorbed at the surface. The observations were explained by the relative position of the viologen stations within the electrical double layer, screening of V22+ by the counterions and high capacity of the medium, which reduces the mobility of the crown ether. The results are useful in transposing of solution‐based molecular switches to the interface or in the design and understanding of the properties of systems comprising electroactive and/or interlocked molecules adsorbed at the nanostructured TiO2 surface.  相似文献   

17.
ABSTRACT

This report describes a facile method by which, without using any surface-assisted growth or pre-organisation, free-standing two-dimensional (2D) covalent organic monolayers (COMs) were synthesised through condensation reactions of planar tri-aldehydes with A1/A2-diamino-substituted pillar[5]arene (DAP5). In the as-formed monolayers (DAP5-COM-1 and DAP5-COM-2), the tubular pentagonal pillar[5]arene units positioned out of the 2D polymer planes suppress efficiently the interlayer π-π stacking interactions. Both DAP5-COM-1 and DAP5-COM-2 can be transferred onto solid surfaces for further characterisation and were found to possess unusual fluorescence up-conversion property.  相似文献   

18.
In the life system, the biointerface plays an important role in cell adsorption, platelet adsorption and activation. Therefore, the study of protein adsorption on the biointerface is of great significance for understanding life phenomena and treatment in vitro. In this paper, a chiral biointerface was constructed by the virtue of host‐guest interaction between a water‐soluble pillar[5]arene (WP5) and phenethylamine (PEA) over a gold surface for adsorption of lysozyme proteins. From the experimental results it was identified that the host‐guest biointerface has a high adsorption capacity and strong chiral selectivity. Furthermotre, it was identified that the host‐guest interaction plays the decisive role in the enhancement of chirality of the interface, which was much beneficial for increasing protein adsorption and amplifying the capacity of chiral discrimination. Therefore, this work provides a new idea for the construction of biointerface materials with high protein adsorption capacity and high chiral selectivity through supramolecular interaction, which will have potential applications in the fields of biosensors, biocatalysts, biomaterials.  相似文献   

19.
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host–guest complexes formed between per-dimethylamino-pillar[5]arene ( 1 ) and the bis-sulfonates 2 a – c , we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a , b as lid compounds, and 2 a – c as guests. We demonstrate that encapsulation of 2 a – c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a) 2 and 1(3 b) 2, is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.  相似文献   

20.
The anion‐templated synthesis of three novel halogen‐bonding 5‐halo‐1,2,3‐triazolium axle containing [2]rotaxanes is described, and the effects of altering the nature of the halogen‐bond donor atom together with the degree of inter‐component preorganisation on the anion‐recognition properties of the interlocked host investigated. The ability of the bromotriazolium motif to direct the halide‐anion‐templated assembly of interpenetrated [2]pseudorotaxanes was studied initially; bromide was found to be the most effective template. As a consequence, bromide anion templation was used to synthesise the first bromotriazolium axle containing [2]rotaxane, the anion‐binding properties of which, determined by 1H NMR spectroscopic titration experiments, revealed enhanced bromide and iodide recognition relative to a hydrogen‐bonding protic triazolium rotaxane analogue. Two halogen‐bonding [2]rotaxanes with bromo‐ and iodotriazolium motifs integrated into shortened axles designed to increase inter‐component preorganisation were also synthesised. Anion 1H NMR spectroscopic titration experiments demonstrated that these rotaxanes were able to bind halide anions even more strongly, with the iodotriazolium axle integrated rotaxane capable of recognising halides in aqueous solvent media. Importantly, these observations suggest that a halogen‐bonding interlocked host binding domain, in combination with increased inter‐component preorganisation, are requisite design features for a potent anion receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号