首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘春光 《物理化学学报》2011,27(7):1661-1665
采用量子化学密度泛函理论(DFT)结合有限场(FF)的方法对一系列含有Pt―Pt键金属配合物的电子结构和二阶非线性光学(NLO)性质进行了理论计算. 结果表明改变共轭配体对Pt―Pt键影响不大. 由配体到Pt―Pt金属基团的电荷转移强度随配体增长而变大. 金属配合物静态一阶超极化率随配体的增长而增大, 配合物电荷的改变基本不影响这类化合物的二阶NLO性质. 具有相对长的共轭配体的配合物IId具有最大的二阶NLO响应. 含时密度泛函理论(TD-DFT)计算表明配合物IId的二阶NLO响应来自于混有配体到金属的配体内的π→π*电荷转移跃迁的贡献.  相似文献   

2.
A combined theoretical and experimental investigation of the electronic structure and optical properties of poly(3-hexylthiophene) (P3HT), poly[3-(4-octylphenyl)thiophene] (POPT) and poly[3-(4-octylphenoxy)thiophene] (POPOT) is reported. In comparison with P3HT, POPT and POPOT exhibit better stabilities and the presence of an oxygen atom and/or a phenyl ring in the side chains enhances conjugation. Quantum chemical calculations have been performed on oligomers of increasing chain length to establish the changes in the electronic and optical properties when going from P3HT to the new derivative POPOT. The knowledge of the structure of these polymers is of utmost importance in understanding their optical properties in different phases (solution and condensed phase). The calculations indicate that, in opposition to P3HT and POPT polymers where the introduction of alkyl chains and the pendant phenyl disturbs the planarity of the backbone of the conjugated segment, POPOT has a better degree of organization in both states: the conjugated chain remains planar even in the presence of the phenoxy groups. Finally, the exciton binding energy is evaluated for these polymers and allows us to conclude that the POPOT is a promising polymer for photovoltaic applications when compared to P3HT and POPT.  相似文献   

3.
Density functional theory calculations have been carried out on nonconjugated D‐π‐A chromophores to investigate the different electron donors and conjugated bridges effects on the molecular nonlinear optical response. The results show that the large second‐order polarizability values can be achieved through careful combination of available electron donors, conjugated bridges for our studied nonconjugated D‐π‐A chromophores. The calculations also provide a clear explanation for the second‐order polarizability changes from the standpoint of transition energies, oscillator strengths, electron density difference, and bond length alternation. Solvent effect has great influence on the second‐order polarizability and electronic absorption spectrum. It is hoped that the results presented in this article will give some hints to the interrelated studies. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
As a newly emerged protocol for the synthesis of conjugated polymers, direct arylation polymerization (DArP) is an environmentally friendly and cost-effective alternative to traditional methods of polymerization. DArP efficiently yields conjugated polymers with high yield and high molecular weight. However, DArP is also known to produce defects in polymer chemical structure. Together with molecular weight and polydispersity, these defects are considered to be important parameters of polymer structure and they have a strong impact on optical, electronic and thermal properties of conjugated polymers. The four major classes of conjugated polymer defects inherent for DArP have been identified: homocoupling regiodefects, branching defects, end group defects, and residual metal defects. To have a precise control over the polymer properties, it is important to understand what causes the defects to form during the polymerization process and be able to control their content. Here within the scope of current literature, we discuss in detail the definition and origin of all these defects, their influence on polymer properties and effective means to control the defects through fine tuning of the DArP reaction parameters. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 135–147  相似文献   

5.
Non-conjugated pendant electroactive polymers (NCPEPs) are an emerging class of polymers that offer the potential of combining the desirable optoelectronic properties of conjugated polymers with the superior synthetic methodologies and stability of traditional non-conjugated polymers. Despite an increasing number of studies focused on NCPEPs, particularly on understanding fundamental structure-property relationships, no attempts have been made to provide an overview on established relationships to date. This review showcases selected reports on NCPEP homopolymers and copolymers that demonstrate how optical, electronic, and physical properties of the polymers are affected by tuning of key structural variables such as the chemical structure of the polymer backbone, molecular weight, tacticity, spacer length, the nature of the pendant group, and in the case of copolymers the ratios between different comonomers and between individual polymer blocks. Correlation of structural features with improved π-stacking and enhanced charge carrier mobility serve as the primary figures of merit in evaluating impact on NCPEP properties. While this review is not intended to serve as a comprehensive summary of all reports on tuning of structural parameters in NCPEPs, it highlights relevant established structure-property relationships that can serve as a guideline for more targeted design of novel NCPEPs in the future.  相似文献   

6.
Atomic scale defects significantly affect the mechanical, electronic, and optical properties of π-conjugated polymers. Here, isolated atomic-scale defects are deliberately introduced into a prototypical anthracene-ethynylene π-conjugated polymer, and its local density of states is carefully examined on the atomic scale to show how individual defects modify the inherent electronic and magnetic properties of this one-dimensional systems. Scanning tunneling and atomic force microscopy experiments, supplemented with density functional theory calculations, reveal the existence of a sharp electronic resonance at the Fermi energy around certain defects, which is associated with the formation of a local magnetic moment accompanied by substantial mitigation of the mobility of charge carriers. While defects in traditionally synthesized polymers lead to arbitrary conformations, the presented results clearly reflect the preferential formation of low dimensional defects at specific polymer sites, which may introduce the possibility of engineering macroscopic defects in surface-synthesized conjugated polymers.  相似文献   

7.
Grazing angle photoluminescence (GPL) originates from a waveguided light emitted at grazing angle to the substrate due to the total internal reflections, and the light emission is polarized with enhanced intensity at selective mode wavelength. GPL measurements reveal the optical anisotropy of luminescent conjugated polymers, in particular, the alignment of emitting dipoles from which emission occurs, in contrast to spectroscopic ellipsometry measurements that give the anisotropy in the absorption. Based on the GPL emission intensities and spectra, we investigate the anisotropic optical properties in electroluminescent poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) conjugated polymer thin films of different molecular weights (M(n) = 9-255 kg/mol), both in the pristine and annealed states. The optical anisotropy in F8BT films generally increases with molecular weight, suggesting that higher molecular weight polymers with longer chains are more likely to lie in-plane to the substrate. Upon annealing, high molecular weight F8BT films show even a higher degree of anisotropy, in contrast to low molecular weight F8BT films that become more isotropic. Annealing causes the polymer chains to rearrange and adopt a configuration in which the interchain exciton migration to better ordered low energy (LE) emissive states is strongly suppressed. We observe that the emissive states in F8BT are strongly affected by the local polymer chain arrangement, producing the less ordered high energy (HE) emissive states near the substrate interface where there is a higher degree of chain disorder and the LE states in the bulk of the film. When spin coated onto a quartz substrate precoated with a poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) layer, films of F8BT show severe luminescence quenching near the PEDOT:PSS interface for both the LE and HE emissive states, but a selective quenching of the LE states in the bulk of the film. These observations have important implications for fabricating efficient electronic devices using conjugated polymers as an active material, since the performance of these devices will strongly depend on anisotropic optical properties of electroluminescent conjugated polymers.  相似文献   

8.
A review on the change mechanism of conjugated polymer upon radiation exposure is presented. The change mechanism is mainly focused on the polymer's optical properties instead of its electrical properties. This research explores the effect of ionizing radiation on the optical change of conjugated polymer. This study also reviewed the possibility of using conjugated polymer as a radiation sensor vis‐à‐vis radiation type and the optical response. From material point of view, topochemical reaction, conjugation length and the degree of anisotropy of the conjugated polymer itself were identified as factors affecting the polymer's optical properties. These factors are tunable to meet a required optical degree, thus making the observation using the optical properties of a conjugated polymer possible for a radiation sensing tool. Based on the review, alteration of the factors and its mechanism of change occurs at macromolecular level. Therefore, a material at its smallest size down to a single molecule could be possible for the indication of radiation. Thus, radiation sensor made of nano or micro colloidal conjugated polymer deserves attention for future development. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A novel series of ladder π‐conjugated materials—sila‐pentathienoacenes ( Si‐PTA ) are synthesized and characterized. Crystal structures of the compounds show that the length of alkyl chains substituting on the thiophene ring has a significant influence on molecular packing. A densely packed structure with an interfacial distance of about 3.66 Å between the adjacent molecules is observed for the compound with shorter alkyl chains. However, a large interfacial distance (7.99 Å) is obtained for another compound because of the insertion of long alkyl chains between two planes. The investigation of the optical and electrochemical properties shows that the silylene bridge incorporated into the pentathienoacene framework exerts a clear effect on the electronic properties by the σ*–π* conjugation. Although only a slight enhancement is observed for the HOMO levels, with respect to that of pentathienoacene, the LUMO levels are significantly lowered. The observed electronic properties are consistent with the theoretical calculations.  相似文献   

10.
The self-consistent charge density-functional tight-binding (SCC-DFTB) method is employed for studying various molecular properties of small fullerenes: C(28), C(60), and C(70). The computed bond distances, vibrational infrared and Raman spectra, vibrational densities of states, and electronic densities of states are compared with experiment (where available) and density-functional theory (DFT) calculations using various basis sets. The presented DFT benchmark calculations using the correlation-consistent polarized valence triple zeta basis set are at present the most extensive calculations on harmonic frequencies of these species. Possible limitations of the SCC-DFTB method for the prediction of molecular vibrational and optical properties are discussed. The presented results suggest that SCC-DFTB is a computationally feasible and reliable method for predicting vibrational and electronic properties of such carbon nanostructures comparable in accuracy with small to medium size basis set DFT calculations at the computational cost of standard semiempirical methods.  相似文献   

11.
Semi-empirical AM1 and ZINDO/S, as well as density function theory (DFT) method B3LYP/6-31G(d) quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene vinylene) derivatives (PPVs) with 10 and 11 phenylene rings in the backbone. The calculations suggest that the assembly of alternate incorporation of CN and alkoxy substituted phenylene rings in the PPV backbone could be a good way to construct organic semiconductors with low HOMO/LUMO energy band-gaps. The effect of the end-group on the electronic structures and optical properties of the conjugated polymer was investigated by the calculated UV-Vis and UPS spectra. It was demonstrated that the aldehyde and phosphate end-groups have limited effects on the photophysical properties in the UV-visible range.  相似文献   

12.
The ability to improve exciton diffusion lengths is a key issue in optimizing many opto‐electronic devices based on conjugated polymers. On the basis of quantum‐chemical calculations, we investigate a strategy consisting of extending the radiative lifetime of energy carriers through incorporation along the polymer backbone of repeating units with forbidden optical transition. The results obtained for poly(p‐phenylenebutadiyne), PPE, and poly(p‐triphenylenebutadiyne), PTPE, show that the larger number of hops performed by the electronic excitations during their lifetime in PTPE is compensated by the smaller hopping length (associated with the reduced conjugation length), so that similar on‐chain diffusion lengths are predicted in both polymers.  相似文献   

13.
刘彩萍  刘萍  吴克琛 《化学学报》2008,66(7):729-737
应用密度泛函理论研究了一系列有机及金属有机苯乙炔树状分子的激发态性质和非线性光学性质。计算的电子吸收光谱显示这些树状分子均在低能区域有一个最强的吸收;此外,金属有机体系的吸收光谱和有机体系相比发生了明显的红移。响应性质的计算结果表明共轭体系的扩展和金属有机基团的引入都使得苯乙炔树状分子的非线性光学极化率显著增加,尤其是含Ru体系,其β和γ值呈数量级增长。对于有机体系和含Pd体系,发生在共轭体系内部的π→π*电荷跃迁是产生分子一阶和二阶超极化率的主要原因。而含Ru体系相当大的非线性响应则主要起源于Ru的轨道到共轭体系的π*的跃迁,同时与Ru相邻的C≡C到共轭体系的π→π*跃迁起着辅助贡献。  相似文献   

14.
The introduction of heavy atoms into conjugated molecules often induces a redshift in the emission spectra. Conversely, we report here a blueshifting effect in the absorption and emission bands of a conjugated organic dye by employing a heavier atom from the same element group. Boron complexes having oxygen‐ and sulfur‐bridged structures in the ligand moiety were synthesized, and their optical properties were compared. Significant optical bands in the absorption and luminescence spectra of the sulfur‐bridged complex were observed in a shorter wavelength region than those of the oxygen‐bridged complex. Theoretical calculations suggest that replacement of the bridging atom by a heavier one should reduce molecular planarity because of the larger atom size. As a result, the degree of electronic conjugation decreases, and this is followed by a blueshift in the optical bands. Finally, a blue‐emissive crystal is demonstrated.  相似文献   

15.
This study demonstrates that single‐chain π‐conjugated systems can be made electrically conductive by modifying the molecular structures of both ends of the oligomers making up a polymer. That is, the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gaps of a fairly long polyyne‐type oligomer with appropriately modified molecular structures at both ends are found to be on the order of thermal energy by calculations using density functional theory (DFT) with B3LYP functionals. This result applies to molecular structures with characteristic bond alternations. The peculiar bond alternations are caused by competition between two effects of the bond alternations of the two mutually perpendicular π‐conjugated systems, which partially cancel each other out. It is probable that we can design one‐dimensional polymers with HOMO–LUMO gaps small enough to be conductive by combining the above‐mentioned oligomers with each other as monomer units in the polymer. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

16.
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2'-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.  相似文献   

17.
The electronic structure and optical properties of 13 chelating heteroatomic conjugated molecules such as pyridine, benzoxazole, and benzothiazole derivatives, which are used as C–N ligands in organometallic compounds, have been investigated. The geometries of the ground and first excited states were obtained by the DFT and CIS methods, respectively, followed by the SAC-CI calculations of the transition energies for absorption and emission. For six compounds whose experimental data are available, the SAC-CI calculations reproduced the experimental values satisfactorily with deviations of less than 0.3 eV for absorption and 0.1 eV for emission except for benzoxazoles. For other molecules, the theoretical absorption and emission spectra were predicted. The lowest ππ* excited-state geometries was calculated to be planar for most of the molecules with two or three conjugated rings connected by single bond. The geometry change due to the ππ* excitation was qualitatively interpreted by electrostatic force theory based on SAC/SAC-CI electron density difference. The excitations are relatively localized in the central region and in the lowest ππ* excited state, the inter-ring single bond shows large change, with a contraction of 0.05–0.09 Å. The present calculations provide reliable information regarding the energy levels of these chelating heteroatomic conjugated compounds.  相似文献   

18.
Ladder‐type organoboranes featuring intramolecular N→B coordination have been prepared through hydroboration of a 2‐(ortho‐styryl)pyridine ( PhPy ) with a series of hydroboranes, including 9H‐9‐borabicyclo[3.3.1]nonyl (9H‐BBN), BH3 ? THF, HBCl2 ? SMe2, HB(C6F5)2, and a 9H‐9‐borafluorene derivative. The hydroboration reaction results in highly regioselective borylation under mild conditions and gives the products in good to excellent yields. The molecular structure and electronic properties of the obtained boranes have been experimentally investigated in detail, and complemented with DFT calculations to further elucidate the origin of differences in optical and electronic properties. The electron affinity of the conjugated system can be controlled through variation of the borane, while the optical properties are likewise directly linked to the type and molecular structure of the substituents on boron. The broad substrate range shows that this preparative approach is widely applicable to introduce chemically diverse boryl groups into conjugated systems.  相似文献   

19.
A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results.  相似文献   

20.
3,4-Appended thiophene monomers furnish unique optoelectronic properties due to electronic and steric effects on the donor unit. Here, we have demonstrated a new polymer synthesis by direct arylation polycondensation of 9,10-dihydro-9,10-[3,4]thiophenoanthracene, a thiophene-based monomer. Chloride-promoted direct arylation polycondensation of 9,10-dihydro-9,10-[3,4]thiophenoanthracene with dibromo monomers with acetate in N,N-dimethylacetamide gave conjugated alternating copolymers. The obtained polymer had a molecular weight of 38,000 and exhibited high film-forming ability. The optical and electrochemical properties of the polymers were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号