首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and characterization of two isoreticular metal–organic frameworks (MOFs), {[Cd(bdc)(4‐bpmh)]}n?2 n(H2O) ( 1 ) and {[Cd(2‐NH2bdc)(4‐bpmh)]}n?2 n(H2O) ( 2 ) [bdc=benzene dicarboxylic acid; 2‐NH2bdc=2‐amino benzene dicarboxylic acid; 4‐bpmh=N,N‐bis‐pyridin‐4‐ylmethylene‐hydrazine], are reported. Both compounds possess similar two‐fold interpenetrated 3D frameworks bridged by dicarboxylates and a 4‐bpmh linker. The 2D Cd‐dicarboxylate layers are extended along the a‐axis to form distorted square grids which are further pillared by 4‐bpmh linkers to result in a 3D pillared‐bilayer interpenetrated framework. Gas adsorption studies demonstrate that the amino‐functionalized MOF 2 shows high selectivity for CO2 (8.4 wt % 273 K and 7.0 wt % 298 K) over CH4, and the uptake amounts are almost double that of non‐functional MOF 1 . Iodine (I2) adsorption studies reveal that amino‐functionalized MOF 2 exhibits a faster I2 adsorption rate and controlled delivery of I2 over the non‐functionalized homolog 1 .  相似文献   

2.
The enhancement of gas adsorption utilizing weak interactions in porous compounds is highly demanding for the design of energy-efficient storage materials. Here, we present a rational design for such an adsorption process by using synergistic functions between dynamic motion in a local module and weak but specific host–guest interactions, that is, halogen-bond (XB) interactions in metal–organic frameworks (MOFs). We designed a new porous coordination polymer (PCP), that is, Br-PCP, the pore surfaces of which are decorated with −CH2Br groups and could be useful for interaction with CO2 molecules. In accordance with our anticipation, in-situ studies suggest that the adsorption step at approximately 54 kPa during CO2 adsorption is indeed facilitated by XB interactions with little change in the structural volume. This approach of integrating flexible XB modules in rigid PCPs is applicable for designing advanced gas storage systems.  相似文献   

3.
Fluorescent Cd metal–organic frameworks (MOFs), [Cd2(dicarboxylate)2(NI-bpy-44)2] (dicarboxylate=benzene-1,4-dicarboxylate (1,4-bdc, 1 ), 2-bromobenzene-1,4-dicarboxylate (Br-1,4-bdc, 2 ), 2-nitrobenzene-1,4-dicarboxylate (NO2-1,4-bdc, 3 ), biphenyl-4,4′-dicarboxylate (bpdc, 4 ); NI-bpy-44=N-(pyridin-4-yl)-4-(pyridin-4-yl)-1,8-naphthalimide)), featuring non- and twofold interpenetrating pcu -type bipillared-layer open structures with sufficient free voids of 58.4, 51.4, 51.5, and 41.4 %, respectively, have been hydro(solvo)thermally synthesized. MOFs 1 – 4 emitted solid-state blue or cyan fluorescence emissions at 447±7 nm, which mainly arose from NI-bpy-44 and are dependent on the incorporated solvents. After immersing the crystalline samples in different solvents, that is, H2O and DMSO ( 1 and 2 ) as well as nitrobenzene and phenol ( 1 – 4 ), they exhibited a remarkable fluorescence quenching effect, whereas o-xylene and p-xylene ( 4 ) caused significant fluorescence enhancement. The sensing ability of MOFs 1 – 4 toward nitro compounds carried out in the vapor phase showed that nitrobenzene and 2-nitrophenol displayed detectable fluorescence quenching with 1 , 2 , and 4 whereas 4-nitrotoluene was an effective fluorescence quencher for 1 and 2 ; this is most likely attributed to their electron-deficient properties and higher vapor pressures. Moreover, MOFs 1 – 4 are highly reusable for quick capture of volatile iodine, as supported by clear crystal color change and also by immense fluorescence quenching responses owing to the donor–acceptor interaction. Low-pressure CO2 adsorption isotherms indicate that activated materials 1′ – 4′ are inefficient at taking up CO2.  相似文献   

4.
Composites of a copper‐based metal‐organic framework (MOF) and graphite oxide (GO) were tested for hydrogen sulfide removal at ambient conditions. In order to understand the mechanisms of adsorption, the initial and exhausted samples were analyzed by various techniques including X‐ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analyses, and sorption of nitrogen. Compared to the parent materials, an enhancement in hydrogen sulfide adsorption was found. It was the result of physical adsorption of water and H2S in the pore space formed at the interface between the MOF units and the graphene layers where the dispersive forces are the strongest. Besides physisorption, reactive adsorption was found as the main mechanism of retention. H2S molecules bind to the copper centers of the MOF. They progressively react with the MOF units resulting in the formation of copper sulfide. This leads to the collapse of the MOF structure. Water enhances adsorption in the composites as it allows the dissolution of hydrogen sulfide.  相似文献   

5.
Owing to the almost boundless structural tunability, MOF and MOF-derived catalysts have recently exhibited structures of higher complexity, and hence, have demonstrated activity in a wide array of organic transformations. These reactions have a broad range of important applications ranging from pharmaceuticals to agriculture. Given the increasing number of publications in the area, this Minireview is focused on the most recent advancements in thermally driven organic transformations using both MOFs, nanoparticle@MOF (NP@MOF) composites, and several classes of MOF-derived materials. The most recent advancements made in materials design and the utility of these materials in a broad range of reactions are discussed.  相似文献   

6.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

7.
The potential emergence of fluorescence-based techniques has propelled research towards developing probes that can sense trace metal ions specifically. Although luminescent metal-organic frameworks (MOFs) are well suited for this application, the role of building blocks towards detection is not fully understood. In this work, a systematic screening by varying number of Lewis basic (pyridyl-N atoms) sites is carried out in a series of isostructural, robust UiO-67 MOFs, and targeting a model metal ion-Fe3+. All the three fluorescent MOFs are seen to present quenching response towards Fe3+ ions in water. However, UiO-67@N exhibits highly selective and sensitive response, whereas emission of both UiO-67 and UiO-67@NN is quenched by several metal ions. Detailed experimental and theoretical mechanistic investigation is carried out in addition to demonstration of UiO-67@N being able to sense trace amount of Fe3+ ions in synthetic biological water sample. Further, UiO-67@N based mixed-matrix membrane (MMM) has been prepared and employed to mimic the real time Fe3+ ions detection in water.  相似文献   

8.
The energy crisis and environmental pollution have forced scientists to explore alternative energy conversion and storage devices. The anodic reactions of these devices are all oxygen evolution reactions (OER), so the development of efficient OER electrocatalysts is of great significance. At the same time, understanding the reaction mechanism of OER is conducive to the rational design of efficient OER electrocatalysts. In general, catalytic active centers play a direct role in OER performance. In this paper, a series of stable bimetallic metal–organic frameworks (MOFs, named as Fe3-Con-X2, n=2, 3 and X=F, Cl, Br) with similar structure were synthesized by changing the halogen coordinated with the cobalt metal active center, aiming to investigate the influence of halogen substitution effect on OER performance. It was found that the OER activity of Fe3-Co3-F2 is much better than Fe3-Co2-Cl2 and Fe3-Co2-Br2, indicating that the regulation of the electronegativity change of the coordination halogen atom can regulate the coordination electron structure of the metal active center, thereby achieving effective regulation of OER performance.  相似文献   

9.
Considering size effect and functionalized pore interaction dyes guests and MOFs hosts, 4-aminonaphthalimide was successfully introduced into the pore of LnMOF for the first time and constructed 4-ANA⊂LnMOF luminescent composites with excellent dual-emission properties. A series of temperature-dependent luminescence test results show that 4-ANA⊂Gd4L3 can be used as a reversible ratiometric luminescent temperature sensor. The functional construction method provides ideas for the development of clear purpose novel dual-emission dye⊂LnMOF ratiometric luminescent sensors.  相似文献   

10.
Differently functionalized porphyrin linkers represent the key compounds for the syntheses of new porphyrin-based metal–organic frameworks (MOFs), which have gathered great interest within the last two decades. Herein we report the synthesis of a large range of 5,15-bis(4-ethoxycarbonylphenyl)porphyrin derivatives, through Suzuki and Sonogashira cross-coupling reactions of an easily accessible corresponding meso-dibrominated trans-A2B2-porphyrin with commercially available boronic acids or terminal alkynes. The resulting porphyrins were fully characterized through NMR, MS, and IR spectroscopy and systematically investigated through UV/Vis absorption. Finally, selected structures were saponified to the corresponding carboxylic acids and subsequently proven to be suitable for the synthesis of surface-anchored MOF thin films.  相似文献   

11.
Introduction of pore partition agents into hexagonal channels of MIL-88 type (acs topology) endows materials with high tunability in gas sorption. Here, we report a strategy to partition acs framework into pacs (partitioned acs) crystalline porous materials (CPM). This strategy is based on insertion of in situ synthesized 4,4′-dipyridylsulfide (dps) ligands. One third of open metal sites in the acs net are retained in pacs MOFs; two thirds are used for pore-space partition. The Co2V-pacs MOFs exhibit near or at record high uptake capacities for C2H2, C2H4, C2H6, and CO2 among MOFs. The storage capacity of C2H2 is 234 cm3 g−1 (298 K) and 330 cm3 g−1 (273 K) at 1 atm for CPM-733-dps (the Co2V-BDC form, BDC=1,4-benzenedicarboxylate). These high uptake capacities are accomplished with low heat of adsorption, a feature desirable for low-energy-cost adsorbent regeneration. CPM-733-dps is stable and shows no loss of C2H2 adsorption capacity following multiple adsorption–desorption cycles.  相似文献   

12.
UiO-66, composed by Zr-oxide inorganic bricks [Zr63-O)43-OH)4] and organic terephthalate linkers, is one of the most studied metal–organic frameworks (MOFs) due to its exceptional thermal, chemical, and mechanical stability. Thanks to its high connectivity, the material can withstand structural deformations during activation processes such as linker exchange, dehydration, and defect formation. These processes do alter the zirconium coordination number in a dynamic way, creating open metal sites for catalysis and thus are able to tune the catalytic properties. In this work, it is shown, by means of first-principle molecular-dynamics simulations at operating conditions, how protic solvents may facilitate such changes in the metal coordination. Solvent can induce structural rearrangements in the material that can lead to undercoordinated but also overcoordinated metal sites. This is demonstrated by simulating activation processes along well-chosen collective variables. Such enhanced MD simulations are able to track the intrinsic dynamics of the framework at realistic conditions.  相似文献   

13.
The introduction of organic ligands into metal–organic frameworks (MOFs) with a specific topology and that cannot be attained by direct synthesis is a big challenge. To meet this challenge, different ligand exchange/incorporation methods have been employed. Here, a new method, called ultrasonic-assisted linker exchange (USALE), has been developed to overcome the above-mentioned problems. USALE is a novel method for ligand exchange based on the use of ultrasonic waves. The temperature and pressure caused by the USALE method in microscopic zones are so intense that the linker exchange process is much faster than with other methods. In addition to saving time during synthesis, the use of the USALE method leads to a higher surface area and pore volume compared with other methods such as solvent-assisted linker exchange (SALE). In this way, improved gas adsorption capacity has been achieved for daughter frameworks synthesized by the USALE method. By using the USALE method, we have transformed a nonporous and easy-to-synthesize TMU framework ([Zn(OBA)(BPDB)0.5]n ⋅ 2DMF (TMU-4), in which H2OBA=4,4′-oxybis(benzoic acid) and BPDB=1,4-di(4-pyridyl)-2,3-diaza-1,3-butadiene) into another porous framework ([Zn(OBA)(H2DPT)0.5]n ⋅ DMF (TMU-34), in which H2DPT=3,6-di(4-pyridyl)-1,4-dihydro-1,2,4,5-tetrazine) that otherwise requires a relatively long time to synthesize. In addition to reducing the synthesis time for TMU-34 (in comparison with both direct sonochemical synthesis and the indirect SALE method), the data obtained revealed that the daughter TMU-34 framework synthesized by the USALE method has a higher surface area and accessible pore volume than TMU-34 frameworks synthesized by SALE and direct methods. The application of SALE-TMU-34 and USALE-TMU-34 in a catalytic Henry condensation reaction and Congo Red adsorption experiments showed that the higher porosity of USALE-TMU-34 leads to a higher turn-over frequency and saturation capacity compared with SALE-TMU-34.  相似文献   

14.
UiO-66 is a classic Metal–organic framework (MOF) that constructed by zirconium cations and terephthalate with high chemical and thermal stability. Using pristine UiO-66 nanocrystals as the catalysts, the carbon–carbon bond formation based on denitrogenative substitution of aryl diazonium salts has been achieved under mild condition. The C–H arylation of both enol acetates and heteroarenes could be performed in aqueous medium without other metal assistance. The UiO-66 catalyst shows good water stability and reusability as well as impressive functional group tolerance.  相似文献   

15.
Through a dual-ligand synthetic approach, five isoreticular primitive cubic (pcu)-type pillared-layer metal–organic frameworks (MOFs), [Zn2(dicarboxylate)2(NI-bpy-44)] ⋅ x DMF ⋅ y H2O, in which dicarboxylate=1,4-bdc ( 1 ), Br-1,4-bdc ( 2 ), NH2-1,4-bdc ( 3 ), 2,6-ndc ( 4 ), and bpdc ( 5 ), have been engineered. MOFs 1 – 5 feature twofold degrees of interpenetration and have open pores of 27.0, 33.6, 36.8, 52.5, and 62.1 %, respectively. Nitrogen adsorption isotherms of activated MOFs 1′ – 5′ at 77 K all displayed type I adsorption behavior, suggesting their microporous nature. Although 1′ and 3′ – 5′ exhibited type I adsorption isotherms of CO2 at 195 K, MOF 2′ showed a two-step gate-opening sorption isotherm of CO2. Furthermore, MOF 3′ also had a significant influence of amine functions on CO2 uptake at high temperature due to the CO2–framework interactions. MOFs 1 – 5 revealed solvent-dependent fluorescence properties; their strong blue-light emissions in aqueous suspensions were efficiently quenched by trace amounts of nitrobenzene (NB), with limits of detection of 4.54, 5.73, 1.88, 2.30, and 2.26 μm , respectively, and Stern–Volmer quenching constants (Ksv) of 2.93×103, 1.79×103, 3.78×103, 4.04×103, and 3.21×103 m −1, respectively. Of particular note, the NB-included framework, NB@ 3 , provided direct evidence of the binding sites, which showed strong host–guest π–π and hydrogen-bonding interactions beneficial for donor–acceptor electron transfer and resulting in fluorescence quenching.  相似文献   

16.
The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF‐23, PAF‐24, and PAF‐25 are built up by a tetrahedral building unit, lithium tetrakis(4‐iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira–Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their “breathing” dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal–organic frameworks, and porous organic frameworks) reported to date.  相似文献   

17.
采用四(4-碘苯基)硼化锂作为四面体基块, 以1,4-苯二硼酸和4,4'-联苯二硼酸作为桥联基团, 通过Suzuki偶联反应成功制备了两种带电荷多孔芳香骨架材料PAF-21和PAF-22. 实验结果证明PAFs具有优异的热稳定性和化学稳定性, 同时材料特有的带电荷芳香骨架导致它们对碘单质具有非常高的亲和力以及吸附能力. 1 g的PAF-21和PAF-22可以分别吸附大约1.52和1.96 g的碘单质. 此外, PAF-21和PAF-22在富集碘单质的过程中可以循环使用. 这类材料非常适合作为新型固体吸附剂用于捕获放射性碘单质.  相似文献   

18.
Ammonia (NH3) is a common pollutant mostly derived from pig manure composting under humid conditions, and it is absolutely necessary to develop materials for ammonia removal with high stability and efficiency. To this end, metal–organic frameworks (MOFs) have received special attention because of their high selectivity of harmful gases in the air, resulting from their large surface area and high density of active sites, which can be tailored by appropriate modifications. Herein, two synthetic metal–organic frameworks (MOFs), 2-methylimidazole zinc salt (ZIF-8) and zinc-trimesic acid (ZnBTC), were selected for ammonia removal under humid conditions during composting. The two MOFs, with different organic linkers, exhibit fairly distinctive ammonia absorption behaviors under the same conditions. For the ZnBTC framework, the ammonia intake is 11.37 mmol/g at 298 K, nine times higher than that of the ZIF-8 framework (1.26 mmol/g). In combination with theoretical calculations, powder XRD patterns, FTIR, and BET surface area tests were conducted to reveal the absorption mechanisms of ammonia for the two materials. The adsorption of ammonia on the ZnBTC framework can be attributed to both physical and chemical adsorption. A strong coordination interaction exists between the nitrogen atom from the ammonia molecule and the zinc atom in the ZnBTC framework. In contrast, the absorption of ammonia in the ZIF-8 framework is mainly physical. The weak interaction between the ammonia molecule and the ZIF-8 framework mainly results from the inherent severely steric hindrance, which is related to the coordination mode of the imidazole ligands and the zinc atom of this framework. Therefore, this study provides a method for designing promising MOFs with appropriate organic linkers for the selective capture of ammonia during manure composting.  相似文献   

19.
A pyrene-based metal-organic framework (MOF) SION-8 captured iodine (I2) vapor with a capacity of 460 and 250 mg g−1MOF at room temperature and 75 °C, respectively. Single-crystal X-ray diffraction analysis and van-der-Waals-corrected density functional theory calculations confirmed the presence of I2 molecules within the pores of SION-8 and their interaction with the pyrene-based ligands. The I2–pyrene interactions in the I2-loaded SION-8 led to a 104-fold increase of its electrical conductivity compared to the bare SION-8 . Upon adsorption, ≥95 % of I2 molecules were incarcerated and could not be washed out, signifying the potential of SION-8 towards the permanent capture of radioactive I2 at room temperature.  相似文献   

20.
谭远铭  孟皓  张霞 《化学进展》2019,31(7):980-995
全球工业的发展带来了严重的水污染问题,对含各类有机和无机污染物工业废水的处理也成为了重要研究课题。金属-有机骨架(Metal-Organic Frameworks, MOFs)化合物由于其大比表面积、高孔隙率、有序孔道结构及可调节孔道物理化学性质、热稳定性高、易于合成和丰富的开放活性位点等特点,在诸多领域得到广泛应用,其中在固相吸附/分离领域,特别是吸附水中污染物方面展现出良好应用前景。通过合成后改性、使用含取代基配体原位合成、与特定功能材料复合等方法实现MOFs功能化,可有效增加MOFs材料的吸附活性位点,提高吸附性能和吸附选择性。与MOFs颗粒相比较,MOFs/聚合物复合膜结合了MOFs颗粒的结构与物理化学特性以及聚合物薄膜优秀的分离/载体性能,在有机染料及重金属离子的吸附中表现出优秀的吸附/分离性能。本文重点综述了以染料和重金属离子为代表的有机、无机污染物的吸附去除为目标的MOFs功能化方法,以及MOFs/聚合物复合膜的制备方法,并对未来研究方向和研究前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号