首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The preparation and spectroscopic identification of the complexes NNBe(η2-N2) and (NN)2Be(η2-N2) and the energetically higher lying isomers Be(NN)2 and Be(NN)3 are reported. NNBe(η2-N2) and (NN)2Be(η2-N2) are the first examples of covalently side-on bonded N2 adducts of a main-group element. The analysis of the electronic structure using modern methods of quantum chemistry suggests that NNBe(η2-N2) and (NN)2Be(η2-N2) should be classified as π complexes rather than metalladiazirines.  相似文献   

2.
Studies on N2 activation and transformation by transition metal hydride complexes are of particular interest and importance. The synthesis and diverse transformations of a dinitrogen dititanium hydride complex bearing the rigid acridane-based acriPNP-pincer ligands {[(acriPNP)Ti]2(μ2-η1:η2-N2)(μ2-H)2} are presented. This complex enabled N2 cleavage and hydrogenation even without additional H2 or other reducing agents. Furthermore, diverse transformations of the N2 unit with a variety of organometallic compounds such as ZnMe2, MgMe2, AlMe3, B(C6F5)3, PinBH, and PhSiH3 have been well established at the rigid acriPNP-ligated dititanium framework, such as reversible bonding-mode change between the end-on and side-on/end-on fashions, diborylative N=N bond cleavage, the formal insertion of two dimethylaluminum species into the N=N bond, and the formal insertion of two silylene units into the N=N bond. This work has revealed many unprecedented aspects of dinitrogen reaction chemistry.  相似文献   

3.
The electronic ground and excited states of the coordinatively unsaturated complex Ni(η1‐N2)2, isolated in an Ar matrix, are analyzed in detail by vibrational and electronic absorption and emission spectroscopies allied with quantum chemical calculations. The bond force constants are determined from a normal coordinate analysis and compared with those of the isoelectronic carbonyl complex. The consequences for the bond properties are discussed, and the trend in the force constants is compared with the standard formation enthalpies. The linear complex Ni(η1‐N2)2 with two terminal dinitrogen ligands can be photoisomerized to two isomeric, metastable forms Ni(η1‐N2)(η2‐N2) and Ni(η2‐N2)2, with one and two side‐on coordinated dinitrogen ligands, respectively.  相似文献   

4.
The reactions of laser‐ablated beryllium atoms with dinitrogen and carbon monoxide mixtures form the end‐on bonded NNBeCO and side‐on bonded (η2‐N2)BeCO isomers in solid argon, which are predicted by quantum chemical calculations to be almost isoenergetic. The end‐on bonded complex has a triplet ground state while the side‐on bonded isomer has a singlet electronic ground state. The complexes rearrange to the energetically lowest lying NBeNCO isomer upon visible light excitation, which is characterized to be an isocyanate complex of a nitrene derivative with a triplet electronic ground state. A bonding analysis using a charge‐ and energy decomposition procedure reveals that the electronic reference state of Be in the NNBeCO isomers has an 2s02p2 excited configuration and that the metal‐ligand bonds can be described in terms of N2→Be←CO σ donation and concomitant N2←Be→CO π backdonation. The results demonstrate that the activation of N2 with the N?N bond being completely cleaved can be achieved via coupling with carbon monoxide mediated by a main group atom.  相似文献   

5.
The azide bridge complex [(η6-p-cymene)Ru(µ-N3)Cl]2 (2) was prepared from the reaction of sodium azide with [(η6-p-cymene)RuCl]2 in ethanol. The molecular structures and spectroscopic properties of the various azido ruthenium complexes so obtained from the reaction with monodentate and bidentate ligands are described.  相似文献   

6.
Studies on N2 activation and transformation by transition metal hydride complexes are of particular interest and importance. The synthesis and diverse transformations of a dinitrogen dititanium hydride complex bearing the rigid acridane‐based acriPNP‐pincer ligands {[(acriPNP)Ti]2(μ2η1:η2‐N2)(μ2‐H)2} are presented. This complex enabled N2 cleavage and hydrogenation even without additional H2 or other reducing agents. Furthermore, diverse transformations of the N2 unit with a variety of organometallic compounds such as ZnMe2, MgMe2, AlMe3, B(C6F5)3, PinBH, and PhSiH3 have been well established at the rigid acriPNP‐ligated dititanium framework, such as reversible bonding‐mode change between the end‐on and side‐on/end‐on fashions, diborylative N=N bond cleavage, the formal insertion of two dimethylaluminum species into the N=N bond, and the formal insertion of two silylene units into the N=N bond. This work has revealed many unprecedented aspects of dinitrogen reaction chemistry.  相似文献   

7.
The reaction of laser-ablated iridium atoms with dinitrogen molecules and nitrogen atoms yield several neutral and ionic iridium dinitrogen complexes such as Ir(N2), Ir(N2)+, Ir(N2)2, Ir(N2)2, IrNNIr, as well as the nitrido complexes IrN, Ir(N)2 and IrIrN. These reaction products were deposited in solid neon, argon and nitrogen matrices and characterized by their infrared spectra. Assignments of vibrational bands are supported by ab initio and first principle calculations as well as 14/15N isotope substitution experiments. The structural and electronic properties of the new dinitrogen and nitrido iridium complexes are discussed. While the formation of the elusive dinitrido complex Ir(N)2 was observed in a subsequent reaction of IrN with N atoms within the cryogenic solid matrices, the threefold coordinated iridium trinitride Ir(N)3 could not be observed so far.  相似文献   

8.
The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded.  相似文献   

9.
The reactions of [η5‐Cp2ZrCl2] (Cp = η5‐C5H5) with [K(THF)n][N(PPh2)2] (n = 1.25—1.5) and K[CH(PPh2NSiMe3)2] are reported. The first reaction led to the monoamido complex [η5‐Cp2Zr(Cl)N(PPh2)2] in which the {(Ph2P)2N} ligand — via a phosphorous and the nitrogen atom — is coordinated to the zirconium atom in a chelating (η2) fashion. Reaction of the potassium methanide compound, K{CH(PPh2NSiMe3)2} with zirconocene dichloride yield the carbene‐like mono cyclopentadienyl complex [η5‐CpZr(Cl){C(PPh2NSiMe3)2}]. The complex is formed by a salt metathesis and concomitant a cyclopentadiene extrusion.  相似文献   

10.
11.
The N2 reduction reaction in the system (η-C5H5)2TiCl2-Mg in tetrahydrofuran was examined. The 13C and 1H NMR results as well as the chemical properties of the products formed revealed that the reaction yielded a mixture of compounds in which the titanium atom was bonded both to the μ-(η5: η5-fulvalene) ligand and to the cyclopentadienyl ligands. In this system dinitrogen undergoes reduction to N3?, which then forms M3N bridges (M = Ti, Mg). The nitride nitrogen may readily be oxidized to imide nitride N?1, which may react further, e.g. with carbon monoxide to produce isocyanates, or, with excess oxidizing agent N2. THF in this system undergoes polymerisation. In addition, a ?OC4H9 alkoxy group is formed which makes the substitution of the cyclopentadienyl group bonded to the titanium atoms possible.  相似文献   

12.
The bis(imino)pyridine 2,6‐(2,6‐iPr2‐C6H3N?CPh)2‐C5H3N (iPrBPDI) molybdenum dinitrogen complex, [{(iPrBPDI)Mo(N2)}2211‐N2)] has been prepared and contains both weakly (terminal) and modestly (bridging) activated N2 ligands. Addition of ammonia resulted in sequential N? H bond activations, thus forming bridging parent imido (μ‐NH) ligands with concomitant reduction of one of the imines of the supporting chelate. Using primary and secondary amines, model intermediates have been isolated that highlight the role of metal–ligand cooperativity in NH3 oxidation.  相似文献   

13.
Sterically demanding 2,6-dibenzhydryl-4-methylphenyl and 1,2,3-triazole based tertiary phosphines, [Ar*{1,2,3-N3C(Ph)C(PR2)}] (R=Ph, 3 ; R=iPr, 4 ) were obtained by the temperature-controlled lithiation of 1-(2,6-dibenzydryl-4-methyl)-5-iodo-4-phenyl-1H-1,2,3-triazole ( 2 ) followed by the reaction with R2PCl (R=Ph, iPr). Treatment of 3 with H2O2, elemental sulfur and selenium yielded chalcogenides [Ar*{1,2,3-N3C(Ph)C(P(E)Ph2)}] (E=O, 5 ; E=S, 6 ; E=Se, 7 ). The reaction of 3 with [Pd(COD)Cl2] in 1 : 1 molar ratio, afforded dimeric complex [Pd(μ2-Cl)Cl{Ar*{1,2,3-N3C(Ph)C(PPh2)}-κ1-P}]2 ( 8 ), whereas the reactions of 3 and 4 with [Pd(η3-C3H5)Cl]2 in 2 : 1 molar ratios produced complexes [Pd(η3-C3H5)Cl{Ar*{1,2,3-N3C(Ph)C(PR2)}-κ1-P}] (R=Ph, 9 ; R=iPr, 10 ). Treatment of 3 with [Pd(OAc)2] in 1 : 1 molar ratio afforded a rare trinuclear complex [{Pd3(OAc)4}{Ar*{1,2,3-N3C(C6H4)C(PPh2)}-κ2-C,P}2] ( 11 ). Treatment of 3 and 4 with [AuCl(SMe2)] resulted in [AuCl{Ar*{1,2,3-N3C(Ph)C(PR2)}-κ1-P}] (R=Ph, 12 ; R=iPr, 13 ). Bulky phosphine 4 was very effective in Suzuki-Miyaura coupling and amination reactions with very low catalyst loading. Molecular structures of 3 – 5 , and 8 – 13 were confirmed by single-crystal X-ray diffraction studies.  相似文献   

14.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

15.
Treatment of RuCl2(PPh3)3 with 6-dimethylaminopentafulvene in THF in the presence of water produced(η5-C5H4CHO) RuCl(PPh3)2, which was reduced by NaBH4 to give the Ru–H···HO dihydrogen bonded complex(η5-C5H4CH2OH) RuH(PPh3)2. The dihydrogen bonded complex(η5-C5H4CH2OH)RuH(PPh3)2 could also be synthesized by the reduction of complex(η5-C5H4CHO)RuH(PPh3)2, which was obtained by the reaction of RuHCl(PPh3)3 with 6-dimethylaminopentafulvene in the presence of water. The analogous dihydrogen bonded osmium complex(η5-C5H4CH2OH)OsH(PPh3)2 was similarly prepared. Single crystal structures and DFT calculations support the presence of intra-molecular H···H interaction, with separations of around 1.9 to 2.0 .  相似文献   

16.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

17.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

18.
Polymorph (Ia) (m.p. 474 K) of the title compound, C12H18N2O3, displays an N—H...O=C hydrogen‐bonded layer structure which contains R66(28) rings connecting six molecules, as well as R22(8) rings linking two molecules. The 3‐connected hydrogen‐bonded net resulting from these interactions has the hcb topology. Form (Ib) (m.p. 471 K) displays N—H...O=C hydrogen‐bonded looped chains in which neighbouring molecules are linked to one another by two different R22(8) rings. Polymorph (Ia) is isostructural with the previously reported form II of 5‐(2‐bromoallyl)‐5‐isopropylbarbituric acid (noctal) and polymorph (Ib) is isostructural with the known crystal structures of four other barbiturates.  相似文献   

19.
Azido Derivatives of the Pentamethylcyclopentadienyl Vanadium(IV)-Fragment. Molecular Structures of the Binuclear Complexes [Cp*VCl(N3)(μ-N3)]2 and [Cp*V(N3)2(μ-N3)]2 The stepwise reaction of Cp*VCl3 with excess trimethylsilyl azide (Me3Si–N3) in solution leads to the paramagnetic, azido-bridged complexes [Cp*VCl2(μ-N3)]2 ( 3 ), [Cp*VCl(N3)(μ-N3)]2 ( 4 ) and [Cp*V(N3)2(μ-N3)]2 ( 5 ) which were characterized by their IR and mass spectra. The azide-rich binuclear complex 5 is also formed if a pentane solution of Cp*V(CO)4 is stirred in the presence of excess Me3Si–N3 in an open vessel. According to the X-ray structure analyses both 4 and 5 are centrosymmetric molecules with a planar V(N)2V four-membered ring. In the absence of free trimethylsilyl azide, solutions of 3 – 5 lose dinitrogen slowly; in the presence of traces of air, 5 is thereby converted to the diamagnetic, oxo-bridged complex [Cp*V(O)(N3)]2(μ-O) ( 6 ).  相似文献   

20.
The enantiomerically pure title complex, [SP‐4‐4]‐(R)‐[2‐(1‐aminoethyl)phenyl‐κ2C1,N]chlorido(quinoline‐κN)palladium(II) acetone hemisolvate, [Pd(C8H10N)Cl(C9H7N)]·0.5C3H6O, crystallizes with four molecules of the organopalladium complex and two molecules of acetone in the asymmetric unit. This corresponds to a discrete hydrogen‐bonded aggregate and to the content of the unit cell in the space group P1. Pronounced pseudo‐inversion symmetry relates pairs of these objects in the asymmetric unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号