首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.  相似文献   

2.
氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量gCN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。  相似文献   

3.
Melamine is a precursor and building block for graphitic carbon nitride (g-CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g-CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the crystal organize into wave-like planes with an interlayer distance of 3.3 Å similar to that of g-CN. Here we present an extensive investigation of the experimental electron density of melamine obtained from modelling of synchrotron radiation X-ray single-crystal diffraction data measured at 25 K with special focus on the molecular geometry and intermolecular interactions. Both intra- and interlayer structures are dominated by hydrogen bonding and π-interactions. Theoretical gas-phase optimizations of the experimental molecular geometry show that bond lengths and angles for atoms in the same chemical environment (C−N bonds in the ring, amine groups) differ significantly more for the experimental geometry than for the gas-phase-optimized geometries, indicating that intermolecular interactions in the crystal affects the molecular geometry. In the experimental crystal geometry, one amine group has significantly more sp3-like character than the others, hinting at a possible formation mechanism of g-CN. Topological analysis and energy frameworks show that the nitrogen atom in this amine group participates in weak intralayer hydrogen bonding. We hypothesize that melamine condenses to g-CN within the layers and that the unique amine group plays a key role in the condensation process.  相似文献   

4.
Water-soluble gold nanoparticles (AuNPs) capped with both fluorescent (FL) 3-aminophthalate (APA) and electrochemiluminescent (ECL) luminol molecules were described in our previous work. The synthetic and characteristic efforts of these functionalized AuNPs (lumAuNPs) were subsequently followed by investigations of their FL and ECL properties, as reported in the present work. It was observed that the FL intensity of a single gold nanoparticle was 70 times brighter than that of one free APA molecule, even though 91% of the FL emission of APA molecules on the surfaces of AuNPs was inhibited by gold cores through both intra- and interparticle quenching effects. Moreover, the photobleaching of surface-bound APA molecules was found to be dramatically inhibited compared with that of free ones in carbonate buffer. The improvement of photostability was attributed to the reactive AuNPs which acted as radical scavengers to protect the surface-bound APA molecules from oxidation by carbonate radicals. Furthermore, as-prepared lumAuNPs could react with cysteine to produce strong electrochemiluminescence, which was enhanced by 20-fold compared with that in the absence of cysteine. The experimental results suggested that luminol and cysteine were coadsorbed on the gold nanoparticle platform via Au-N and Au-S interactions, respectively. The shorter distance between reactant molecules by overcoming the electrostatic repulsion, that is, platform effect, was proposed to be responsible for the ECL enhancement. Combined with the biocompatibility of gold cores, the brighter FL emission, enhanced photostability, and stronger ECL intensity may make as-prepared lumAuNPs promising FL and ECL biomarkers for their applications in biosensors and bioimaging.  相似文献   

5.
The photoelectrochemical sensor basedon Cu/g-CN composites modified electrodeis firstly used to monitor bisphenol Awith high sensitivity. This work opens theway for the application of Cu/g-CN composites in photoelectrochemical field, and simultaneously contributed to broadening the application of graphitic carbon nitride-based materials. In addition, it can provide a convenient and rapid analysis method for the detection of other organic compounds in the future.  相似文献   

6.
We present systematic, theoretical investigations on structure-property correlations in polyfluorenes (PFs) derived mainly from the chain morphology, oligomer length, and chemical substitutent. Both the vertical absorptions and the vibrational contributions to electronic absorption and fluorescence spectra have been calculated. The effect of temperature on the nature of photoexcitations of PFs has been demonstrated. It is found that the vibronic (electronic and vibrational) structures of PFs are morphology-dependent. beta-phase oligofluorenes (beta-(FL)(n)) and ladder-type poly(p-phenylene) (LPPP) oligomers show a red shift compared to the spectra of alpha-(FL)(n). The asymmetry of the absorption and fluorescence spectra in alpha-(FL)(n) and the fluorenone (FLO) defect oligofluorenes alpha-(FL)(n)(-)(m)(FLO)(m) is significantly more pronounced than that in planarized beta-(FL)(n) and LPPP oligomers. By properly taking into account the anharmonic torsion potentials resulting from the strong electronic and nuclear coupling in the oligofluorenes, we have reasonably reproduced the experimentally observed spectroscopic features. The low-energy on-chain chemical defect sites such as FLO units act as charge-trapping sites for singlet excitations, are the predominantly lighting-emitting species, and thus alter the blue light-emitting properties of PFs whereas the blue-light-emitting properties of PFs are hardly influenced by the hole-transporting molecules. The optical properties of PFs have been predicted by the finite-size calculations. Energy gaps of PFs are estimated by extrapolations from excitation energies of oligofluorenes up to 21 FL units.  相似文献   

7.
The photophysical and related properties of platinum(II) Schiff base complexes can be finely and predictably tuned over a wide range of wavelengths by small and easily implemented changes to ligand structure. A series of such complexes, differing only in the number and positioning of methoxy substituents on the phenoxy ring, were synthesised and their photophysical, electrochemical and electrochemiluminescent (ECL) properties investigated. Theoretical calculations were performed in order to gain further insight into the relationship between structure and properties in these materials. By positioning methoxy groups para and/or ortho to either the imine or the oxygen group on the ligand, electron density could be directed selectively toward the LUMO or HOMO as required. This allowed the emission colour (both photoluminescent and electrochemiluminescent) to be tuned over a wide range between 587 and 739 nm. The variation in orbital energies was also manifested in the positions of the absorption bands and the redox properties of the complexes, as well as in the NMR shifts for the uncoordinated ligands. All reported complexes displayed intense electrochemiluminescence (ECL), which could be initiated either by annihilation or co‐reactant pathways. The relationship between the electrochemical and photophysical properties and the efficiency of the ECL is discussed. For two of the complexes solid‐state ECL could be generated from electrodeposited layers of the complex.  相似文献   

8.
《化学:亚洲杂志》2017,12(8):835-840
Synthesis of mini‐sized carbon nitride nanosheets (CNNSs) by traditional methods remains a challenge. Herein, size‐tunable and uniform mini‐sized CNNSs are synthesized by hydrothermal carbonization of a single polyethyleneimine (PEI) precursor. The as‐obtained mini‐sized CNNSs possess uniform size, good hydrophilicity and abundant nitrogen active sites, which not only exhibit double excitation‐ and pH‐dependent fluorescence behaviors, but also two‐photon excitation fluorescence. áThe resulting CNNSs display low toxicity and can be efficiently delivered into live cells for two‐photon fluorescence imaging, offering great potential as fluorescence probes in biochemical applications.  相似文献   

9.
A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes.Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states.It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p,which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO.A physical model was suggested to elucidate the differences of ECL spectra.A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.  相似文献   

10.
In this review, thin films of SiO2 on Mo(1 1 2) and MgO(1 0 0) on Mo(1 0 0) have been characterized using metastable impact electron and ultraviolet photoelectron spectroscopies (metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy). The electronic and chemical properties of the thin films are identical to those of the corresponding bulk oxides. For different prepared defective SiO2 surfaces, additional features are observed in the band-gap region. These features arise from vacancies or excess oxygen and are consistent with theoretical predictions of additional occupied states in the band-gap due to point defects. Extended defect sites on SiO2 and MgO are identified using MIES by a narrowing of the O(2p) features with a reduction in the density of extended defect sites. MIES of adsorbed Xe (MAX) is also used to estimate the density of extended defect sites. Furthermore, it is shown that CO is an appropriate probe molecule for estimating the defect density of MgO surfaces. Upon Ag exposure, the change in the work function of a low defect MgO(1 0 0) versus a high defect surface is markedly different. For a sputter-damaged MgO(1 0 0) surface, an initial decrease of the work function was found, implying that small Ag clusters on this surface are electron deficient. In contrast, for SiO2 no significant change of the work function upon Ag exposure with increasing defect density was observed. On MgO(1 0 0), the presence of defect sites markedly alter the electronic and chemical properties of supported Ag clusters. Such a strong influence of defect sites was not found for Ag clusters on SiO2.  相似文献   

11.
We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.  相似文献   

12.
Electrogenerated chemiluminescence (ECL) arising from the reaction of radical ions has previously be shown to arise from a variety of states including excited singlets, triplets, excimers, and exciplexes. In this work we describe two systems that form emissive states in ECL with different properties than those when formed with photoluminescence. The first system involves the reaction of the anthracene radical anion with the radical cation of 4,N,N-trimethylaniline. ECL from this system exhibited an exciplex whose energy and intensity relative to the emission from the anthracene singlet could be tuned by adjusting the solvent permittivity and ionic strength. Under conditions considered extreme for electrochemical experiments, no added electrolyte in dimethoxyethane, the relative intensity of the anthracene-related exciplex, formed from the encounter complex, was 8 times greater and red-shifted from that generated by photoluminescence in the same solution with 100-fold exciplex partner added. In the second system examined, the benzophenone radical anion reacted with the radical cation of either phenoxathiin or 4-methoxythioanisole; the ECL emission was from the benzophenone triplet state and an excimer. The excimer, a species not seen with photoluminescence, predominated as the benzophenone concentration was elevated into the low millimolar range. The results from these two simple systems clearly demonstrate that the radical ion annihilation pathway of ECL can generate different emissive states than those formed following photoexcitation.  相似文献   

13.
A solid-state electrochemiluminescence (ECL) biosensing switch based on special ferrocene-labeled molecular beacon (Fc-MB) has been successfully developed for T4 DNA ligase detection. Such special switch system consisted of two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. A molecular beacon labeled by ferrocene as the ECL intensity switch. The molecular beacon is designed with special base sequence, which could combine with its target biomolecule via the reaction of the repair and recombination of nucleic acids by DNA ligase. During the reaction, the molecular beacon opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect to the ECL substrate. The analysis results are sensitive and specific.  相似文献   

14.
The electrochemistry and electrogenerated chemiluminescence (ECL) of four kinds of electron donor–acceptor molecules exhibiting thermally activated delayed fluorescence (TADF) is presented. TADF molecules can harvest light energy from the lowest triplet state by spin up‐conversion to the lowest singlet state because of small energy gap between these states. Intense green to red ECL is emitted from the TADF molecules by applying a square‐wave voltage. Remarkably, it is shown that the efficiency of ECL from one of the TADF molecule could reach about 50 %, which is comparable to its photoluminescence quantum yield.  相似文献   

15.
Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.  相似文献   

16.
The objective of the tandem hydroformylation-hydrogenation of alkenes to corresponding alcohols was to design an efficient and stable heterogeneous catalyst. To this end, a series of novel heterogeneous graphitic carbon nitride (g-CN) supported bimetallic Rh−Co nanoparticle catalysts (Rh−Co/g-CN) were prepared and subsequently studied for this one-pot two-step reaction. The lamellar structure makes Rh and Co nanoparticles with diameters of <1 nm and 20 nm, respectively, homogeneously deposited on the surface of g-CN layers, exhibit remarkable conversion of styrene (99.9 %) and chemoselectivity for alcohol (87.8 %). More importantly, Co nanoparticles are found to play an important role in the improvement of the chemoselectivity for alcohol due to the formation of catalytic active species [HCo(CO)y]. Besides the detailed investigation of the catalytic properties of Rh−Co/g-CN under different reaction conditions, the reuse of Rh−Co/g-CN was conducted for five times and no evident decrease in the activity and chemoselectivity was observed. Therefore, we expect that this work could offer an initial insight into g-CN-based heterogeneous catalyst on the tandem hydroformylation-hydrogenation reaction.  相似文献   

17.
Trianguleniums are fascinating conjugated hexacyclic cations that exhibit interesting electronic and optical properties. Herein, the electrogenerated chemiluminescence (ECL) emission of this family of fluorescent dyes is reported for the first time. Redox behavior and fluorescence properties of eight cationic triangulene luminophores with different heteroatom patterns in the core structure and various pending substituents were examined to rationalize the ECL. Clearly, the more electron‐rich the carbocation, the more efficient the corresponding ECL; two very distinct classes of triangulenes can be drawn from these studies by using an ECL wall sufficiency formalism.  相似文献   

18.
纳米金颗粒具有高的消光系数和良好的表面等离子体共振特性, 其等离子体共振特性受纳米金颗粒的尺寸和周围环境等因素的影响. 本文基于半导体纳米晶电化学发光信号对金纳米颗粒的距离依赖性制备了DNA电化学发光传感器. 首先利用循环伏安法(CV)在玻碳电极(GCE)表面原位沉积金纳米颗粒(AuNPs), 巯基丙酸包裹的CdS量子点(QDs)与氨基修饰的双链DNA (dsDNA)通过酰胺键缩合, 形成量子点修饰的双链DNA(QDs-dsDNA). 最后将QDs-dsDNA 通过dsDNA 另一端的巯基组装到纳米金表面, 得到CdS QDs-DNA/AuNPs/GCE电化学发光传感器. 在优化电极表面QDs-dsDNA密度、金纳米颗粒沉积方法等实验条件的基础上, 对不同传感器的表面性质进行了表征, 如形貌和电化学阻抗等. 进一步通过控制纳米金和CdS QDs之间的DNA研究了纳米金对CdS QDs发光信号的影响作用. 结果显示DNA链的长度和类型对发光信号有着重要的影响. 最后将此传感器用于环境污染物的DNA损伤检测, 显示出很好的灵敏响应.  相似文献   

19.
雷刚  刘洋 《电化学》2019,25(3):349-362
电化学发光(ECL)因其独特的性能特点在生物分析等领域展现出广阔的应用前景,高效ECL试剂的开发则为性能优异的传感器件的发展和临床应用提供了重要工具. 开放骨架超四面体硫簇由于同时具有分子筛的多孔结构和半导体的优异光电性能,在ECL分析中受到了越来越多的关注. 超四面体硫簇的结构组成可以实现原子级别的精确调控,并且其本身还可以作为结构单元来构筑多孔结构半导体材料. 这些特点使通过原子级别的结构组成调节来调控超四面体硫簇的性能成为可能,为发展性能优异的电化学发光材料,拓展其在生化传感、免疫分析和生物成像等方面的应用提供有效工具. 本综述总结了超四面体硫簇的合成、缺陷掺杂、功能调控及ECL生化分析等方面的研究进展,为推进高效ECL新材料的发展和新应用的拓展提供了借鉴.  相似文献   

20.
Infrared spectroscopy of adsorbed CO was used to characterize the dependence of surface structure on deposition temperature during homoepitaxial growth on Cu(100). Intensity borrowing due to dipole coupling greatly enhances the absorption signal due to defect-bonded CO, making it possible to detect and quantify defect concentrations at the level of a few percent. For deposition temperatures between 300 and 400 K, the defect density increases slightly with decreasing deposition temperature but remains below 2%. There is a sharp increase in defect density, up to 5%-6%, as the deposition temperature is decreased from 300 to 250 K. At lower deposition temperatures, there is some sign of a leveling off in defect density, but the IR absorption spectrum becomes so broad that meaningful analysis becomes impractical, while visible degradation of the low-energy electron diffraction pattern indicates worsening surface order. No indication of "re-entrant" ordering at low temperatures was observed for deposition temperatures down to 150 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号