首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis of biomass‐derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low‐cost biomass. The scientific strategy relies on a Diels–Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta‐xylylenediamine (MXD). Transposition of this work to other furfural‐derived chemicals is also discussed and reveals that functionalized biomass‐derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route.  相似文献   

2.
《印度化学会志》2021,98(1):100018
Biomass is considered as the most sustainable and renewable resource for the synthesis of value added potential platform chemicals. Various techniques are utilized to extract or to pre-treat or to isolate various value added chemicals from biomass. Pre-treatment of the biomass is a very essential aspect to enhance the biomass processing yield which is attributed to reduced lignin content/delignification, cellulose crystallinity and hemi-cellulose hydration. In search of efficient extraction and processing for biomass treatment, supercritical fluid (SCF) has been considered as the green technique to obtain the value added chemicals with higher efficiency than conventional technique. The use of the supercritical carbon dioxide (SC–CO2) pre-treatment on biomass not only enhances glucose yield effectively but also delignify, hydrolyse hemi-cellulose component and allows extraction of various compounds from the biomass. However, very limited research articles are available for the use of SC-CO2 for biomass processing to obtain value-added chemicals. In view of this, the present review article focus on the recent advances of applications of SC-CO2 in (i) extraction of value added chemicals from biomass processing, (ii) biomass pre-treatment, (iii) factors affecting SC-CO2 processing efficiency, (iv) scale-up scenario (v) challenges and opportunities in this field.  相似文献   

3.
Biomass-derived hexose sugars, the most abundant renewable resources in the world, have potential to be the sustainable resources for production of platform chemicals. Here, conversion of glucose is investigated by using sulfonated graphene (rGO-SO3H) as solid acid catalyst in water without any organic solvent. At first, graphene functionalized with sulfonic acid groups is prepared by using NaH and propane sultone, and then it is characterized by means of XPS, FT-IR, and TEM to confirm the existence of the sulfonic acid groups. The catalytic activity of rGO-SO3H in the conversion of glucose to valuable chemicals is studied under different reaction conditions. The maximum yield of 5-hydroxymethylfurfural (HMF) is 28.8%, and the total yield of formic acid, lactic acid and HMF is 51.94% when the reaction is conducted at the optimized reaction condition. In addition, the rGO-SO3H gives a relatively high total yield of the three kinds of products after five run experiments, indicating that the catalyst shows good thermal stability.  相似文献   

4.
The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn+ clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn+ clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C−C bond activation and C−H bond cleavage on the Nbn+ clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb−C bonds and an elongated C−C distance in the HNbn+CH2CH3 motif. Subsequent reactions allow for C−C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.  相似文献   

5.
It is crucial to develop economical and energy-efficient processes for the sustainable transformation of biomass into fuels and chemicals. In this context, supercritical water biomass valorization (SCBV) processes are an alternative way to produce biogas, biofuels, and valuable chemicals. Supercritical water technology has seen much progress over the last fifteen years and an industrial application has merged: the supercritical water oxidation of wastes. The evolution from lab-scale to pilot-scale facilities has provided data on reaction mechanisms, kinetics, modeling, and reactor technology as well as an important know-how, which can now be exploited to use the reactivity in supercritical water to transform biomass into gases (CO, H2, CO2, CH4, and N2) or into liquids (liquid fuel and valuable chemicals) with the supercritical water biomass gasification and liquefaction processes, respectively. This Review highlights the potential of SCBV processes to transform biomass into gas and liquid energy sources and highlights the developments that are still necessary to push this technology onto the market.  相似文献   

6.
Converting CO2 into high-value C2 chemicals such as acetate with high selectivity and efficiency is a critical issue in renewable energy storage. Herein, for the first time we present a vibration-driven piezocatalysis with tin(II) monosulfide (SnS) nanobelts for conversion of CO2 to acetate with 100 % selectivity, and the highest production rate (2.21 mM h−1) compared with reported catalysts. Mechanism analysis reveal that the polarized charges triggered by periodic mechanical vibration promote the adsorption and activation of CO2. The electron transfer can be facilitated due to built-in electric field, decreased band gap and work function of SnS under stress. Remarkably, reduced distance between active sites leads to charge enrichment on Sn sites, promoting the C−C coupling, reducing the energy barriers of the rate determining step. It puts forward a bran-new strategy for converting CO2 into high-value C2 products with efficient, low-cost and environment-friendly piezocatalysis utilizing mechanical energy.  相似文献   

7.
The zirconium catalyzed hydroaminoalkylation of alkenes with N-aryl- and sterically demanding N-alkyl-α-arylated secondary amines by using commercially available Zr(NMe2)4 is reported. N-phenyl- and N-isopropylbenzylamine are used as amine substrates to establish the alkene substrate scope. Exclusively linear products are obtained in the presence of bulky vinylsilanes. Challenging α-heteroarylated amines and functionalized alkene substrates are compatible with this easy to use catalyst, affording a new disconnection strategy for the atom- and step-economic preparation of selectively substituted saturated α-arylated heterocycles.  相似文献   

8.
The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role.  相似文献   

9.
Solar-driven CO2 reduction integrated with C−C/C−X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C−H bonds for accessing allylic C−C products, over SiO2-supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C−C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2–5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.  相似文献   

10.
Concerns over the environment and energy security have led to considerable research efforts into the development of renewable alternatives to fossil-based fuels and chemical from biomass. Algae has been identified as the biomass with great potential for utilization in this regard, due to several advantages algae has over terrestrial plants, such as a higher growth rate and photosynthetic efficiency, better CO2 sequestration, and the ability to grow in non-arable land with low quality water. Conversion technologies, particularly thermochemical conversion, are actively being researched and developed to produce renewable chemicals and fuels. A major advance in this regard is thermal conversion of whole algal biomass, especially wet processing that can significantly reduce the cost of production. This short review looks at major developments in thermal processing of algal biomass with primary focus on the past two years.  相似文献   

11.
Herein we describe a reaction of ortho‐carbonylated alkynyl‐substituted arylaldehydes with common primary amines that can provide functionalized isoindolinone and 3‐hydroxylindenamine products in high yields. Depending on the substituent size of primary amines, two distinct reaction pathways were exploited selectively, that are, an initial aza‐conjugate addition followed by hydrogen transfer to access isoindolinone framework and a unique oxa‐conjugate addition followed by Petasis–Ferrier rearrangement to afford indenamine derivatives. In the presence of Et3N, the reaction property of small primary amines was changed, proceeding to afford 3‐hydroxylindenamine derivatives efficiently. These products contain interesting substructures that exist in many natural products and bioactive molecules. The reaction features contain the use of transition‐metal‐free catalysts, simple operation, broad substrate scope, and product diversity.  相似文献   

12.
Pyrolysis of lignocellulosic biomass leads to an array of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose, cellulose and lignin, different temperatures may be applied for a step-wise degradation into valuable chemicals. Staged degasification experiments were conducted with deciduous (beech, poplar), coniferous (spruce) and herbaceous (straw) biomass. Thermogravimetry was used to estimate appropriate temperatures for a two-stage degradation process that was subsequently evaluated on bench-scale by moving bed and bubbling fluidised bed pyrolysis experiments. Degasification in two consecutive stages at 250–300 °C and 350–400 °C leads to mixtures of degradation products that originate from the whole biomass. The mixtures that were generated at 250–300 °C, predominantly contain hemicellulose degradation products, while the composition of the mixtures that were obtained at 350–400 °C, is more representative for cellulose. Lignin-derived fragments are found in both mixtures. Yields up to 5 wt% of the dry feedstock are obtained for chemicals like acetic acid, furfural, acetol and levoglucosan. Certain groups of thermal degradation products like C2–C4 oxygenates and phenols are formed in yields up to 3 wt%. Highest yields have been obtained for beech wood. Staged degasification is a promising pyrolysis-based route to valorise lignocellulosic biomass. Clear opportunities exist to increase product yields and selectivities by optimisation of reactor conditions, application of catalysts and specific biomass pretreatments like demineralisation and pre-hydrolysis.  相似文献   

13.
As a key renewable chemical for plastics and fine chemicals, the preparation of 5-hydroxymethylfurfural (5-HMF) from biomass is an important research topic. Cellulose, although abundant in nature, is difficult to convert to 5-HMF in good yields due to its recalcitrant and heterogeneous nature. In this work, we show an efficient two-step process for converting microcrystalline cellulose into 5-HMF with ionic liquids under mild conditions. In the first step, high glucose yields of above 80% could be obtained from the cellulose hydrolysis by a strong acidic cation exchange resin in 1-ethyl-3-methyl imidazolium chloride ([EMIM][Cl]) with gradual addition of water. In the second step, the resin was separated from the reaction mixture and CrCl3 was added which lead to a 5-HMF yield of 73% based on cellulose substrate. The strategy can allow practical conversion of biomass into bio-derived products.  相似文献   

14.
C-Alkyl glycosides and glycoproteins exist in natural products and are prized for their role as carbohydrate mimics in drug design. However, a practical strategy that merges glycosyl donors with readily accessible reagents, derived from abundant carboxylic acid and amine feedstocks, is yet to be conceived. Herein, we show that a nickel catalyst promotes C−C coupling between glycosyl halides and aliphatic acids or primary amines (converted into redox-active electrophiles in one step), in the presence of Hantzsch ester and LiI (or Et3N) under blue LED illumination to deliver C-alkyl glycosides with high diastereoselectivity. Mechanistic studies support the photoinduced formation of alkyl radicals that react with a glycosyl nickel species generated in situ to facilitate cross-coupling. Through this manifold, innate CO2H and NH2 motifs embedded within amino acids and oligopeptides are selectively capped and functionalized to afford glycopeptide conjugates through late-stage glycosylation.  相似文献   

15.
From the Et2O extract of the Chinese liverwort Marchantia polymorpha L., three new bibenzyl (=1,1′‐(ethane‐1,2‐diyl)bisbenzene) derivatives, compounds 1 – 3 , were obtained, together with the two known compounds marchantin J and perrottetin E. Their structures were established by NMR and HR‐EI‐MS analyses. Polymorphatin A ( 1 ) represents a new type of bis[bibenzyl] skeleton, and compound 3 is the first example of a bibenzyl oxidatively coupled to a phenylmethanol.  相似文献   

16.
Converting renewable biomass and their derivatives into chemicals and fuels has received much attention to reduce the dependence on fossil resources. Photocatalytic ethanol dehydrogenation–acetalization to prepare value-added 1,1-diethoxyethane and H2 was achieved over non-precious metal CdS/Ni-MoS2 catalyst under visible light. The system displays an excellent production rate and high selectivity of 1,1-diethoxyethane, 52.1 mmol g−1 h−1 and 99.2 %, respectively. In-situ electron spin resonance, photoluminescence spectroscopy and transient photocurrent responses were conducted to investigate the mechanism. This study provides a promising strategy for a green application of bioethanol.  相似文献   

17.
The insertion of an aryne into a C S bond can suppress the addition of an S nucleophile to the aryne in the presence of palladium. Catalyzed by Pd(OAc)2, a wide range of α‐carbamoyl ketene dithioacetals readily react with arynes to selectively afford functionalized 2‐quinolinones in high yields under neutral reaction conditions by a C S activation/aryne insertion/intramolecular coupling sequence. The attractive feature of the new strategy also lies in the versatile transformations of the alkythio‐substituted quinolinone products.  相似文献   

18.
Microbial cell factories provide a green and sustainable opportunity to produce value-added products from renewable feedstock. However, the leakage of toxic or volatile intermediates decreases the efficiency of microbial cell factories. In this study, membraneless organelles (MLOs) were reconstructed in Saccharomyces cerevisiae by the disordered protein sequence A-IDPs. A regulation system was designed to spatiotemporally regulate the size and rigidity of MLOs. Manipulating the MLO size of strain ZP03-FM, the amounts of assimilated methanol and malate were increased by 162 % and 61 %, respectively. Furthermore, manipulating the MLO rigidity in strain ZP04-RB made acetyl-coA synthesis from oxidative glycolysis change to non-oxidative glycolysis; consequently, CO2 release decreased by 35 % and the n-butanol yield increased by 20 %. This artificial MLO provides a strategy for the co-localization of enzymes to channel C1 starting materials into value-added chemicals.  相似文献   

19.
20.
An efficient method for the stereoselective synthesis of (Z)-3-((arylamino)methylene)indoline-2-thiones have been developed via a novel multicomponent reaction of indoles, CS2 and nitroarenes. A range of functionalized indoline-2-thiones were prepared in moderate to good yields from easily available starting materials. The indoline-2-thione products can be easily derivatized to give biologically active thieno[2,3-b]indole and thiopyrano[2,3-b]indole skeletons in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号