首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecules comprised of three covalently linked bi‐stable switches can exist in states described by a combination of binary numbers, one for each individual switch: ?000?, ?001?, etc. Here we have linked three photo‐/thermoswitches together in a rigid macrocyclic structure, one azobenzene (bit no 1) and two dihydroazulenes (DHAs; bits no 2 and 3) and demonstrate how electronic interactions and unfavorable strain in some states can be used to control the speed by which a certain state is reached. More specifically, upon irradiation of state ?000?, the AZB isomerizes from trans to cis and the two DHAs to vinylheptafulvenes (VHFs), generating ?111?. The thermal VHF‐to‐DHA back‐reactions from this state also occur stepwise and can be accelerated by photo‐induced AZB cis‐to‐trans conversion, proceeding via ?011? to ultimately furnish ?000?. Overall, the accessibility to a specific state of one bit was found to depend on the states of its neighboring bits.  相似文献   

2.
We present the synthesis and switching studies of systems with two photochromic dihydroazulene (DHA) units connected by a phenylene bridge at either para or meta positions, which correspond to a linear or cross‐conjugated pathway between the photochromes. According to UV/Vis absorption and NMR spectroscopic measurements, the meta‐phenylene‐bridged DHA–DHA exhibited sequential light‐induced ring openings of the two DHA units to their corresponding vinylheptafulvenes (VHFs). Initially, the VHF–DHA species was generated, and, ultimately, after continued irradiation, the VHF–VHF species. Studies in different solvents and quantum chemical calculations indicate that the excitation of DHA–VHF is no longer a local DHA excitation but a charge‐transfer transition that involves the neighboring VHF unit. For the linearly conjugated para‐phenylene‐bridged dimer, electronic communication between the two units is so efficient that the photoactivity is reduced for both the DHA–DHA and DHA–VHF species, and DHA–DHA, DHA–VHF, and VHF–VHF were all present during irradiation. In all, by changing the bridging unit, we can control the degree of stepwise photoswitching.  相似文献   

3.
Photochromic molecules are systems that undergo a photoisomerization to high-energy isomers and are attractive for the storage of solar energy in a closed-energy cycle, for example, in molecular solar thermal energy storage systems. One challenge is to control the discharge time of the high-energy isomer. Here, we show that different substituents in the ortho position of a phenyl ring at C-2 of dihydroazulene (DHA-Ph) significantly increase the half-life of the metastable vinylheptafulvene (VHF-Ph) photoisomer; thus, the energy-releasing VHF-to-DHA back-reaction rises from minutes to days in comparison to the corresponding para- and meta-substituted systems. Systems with two photochromic DHA-Ph units connected by a diacetylene bridge either at the para, meta and ortho positions and corresponding to a linear or to a cross-conjugated pathway between the two photochromes are also presented. Here, the ortho substitution was found to compromise the switching properties. Thus, irradiation of ortho-bridged DHA-DHA resulted in degradation, probably due to the proximity of the different functional groups that can give rise to side-reactions.  相似文献   

4.
5.
6.
Reversibly photoswitchable phenylazo-3,5-dimethylisoxazole and 37 aryl-substituted derivatives were synthesized. Excellent photoswitching ability of these compounds in solution and the solid state was demonstrated. Through kinetics studies by means of NMR spectroscopy, high Z-isomer stability was demonstrated. Interestingly, the majority of the derivatives showed light-induced contrasting color changes in solution and the solid state. Besides, many of the derivatives exhibit partial phase transition upon UV irradiation. The highlight of this class of photoswitches is the reversible light-induced phase transition between solid and liquid phases in the parent compound, which can be used in patterned crystallization. These results show that this new class of azoheteroarene based photoswitches has opportunities to be useful in various domains.  相似文献   

7.
Longer switching wavelengths and good photochemical yields and stabilities of the cis isomers in reducing aqueous environments are achieved by introducing 2,2′‐aminoalkyl substituents into 4,4′‐diamido‐substituted azobenzenes. The products are thus suitable for photocontrol of biomolecular structures in intracellular environments, such as switching between two peptide configurations (see picture).

  相似文献   


8.
9.
The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA–DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF–VHF). A stepwise energy release over two sequential ring‐closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long‐term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release.  相似文献   

10.
11.
A novel strategy to generate functionalized 1‐azatriene intermediates for 6π electrocyclizations was developed by using readily accessible dienyne‐imides and various terminal olefins under PdII catalysis. Taking advantage of the sequential cooperation between preloaded and incorporated functional handles at 1,3‐dien‐5‐yne skeletons, this method not only enables the selective generation of putative 1‐azatrienes but significantly accelerates their thermal 6π‐electrocyclic ring‐closure processes to a series of highly substituted furo[2,3‐b]dihydropyridine derivatives in good yields.  相似文献   

12.
13.
14.
In an attempt to design molecular optoelectronic switches functioning in molecular junctions between two metal tips, we synthesized a set of photochromic compounds by extending the π-system of 1,2-bis-(2-methyl-5-formylfuran-3-yl)perfluorocyclopentene through suitable coupling reactions involving the formyl functions, thereby also introducing terminal groups with a binding capacity to gold. Avoiding the presence of gold-binding sulphur atoms in the photoreactive centre, as they are present in the frequently used analogous thienyl compounds, the newly synthesized compounds should be more suitable for the purpose indicated. The kinetics of reversible photoswitching of the new compounds by UV and visible light was quantitatively investigated in solution. The role of conformational flexibility of the π-system for the width of the UV/Vis spectra was clarified by using quantum chemical calculations with time-dependent (TD)-DFT. As a preliminary test of the potential of the new compounds to serve as optoelectronic molecular switches, monolayer formation and photochemical switching on gold surfaces was observed by using surface plasmon resonance.  相似文献   

15.
Photochemical conversion of molecules into high‐energy isomers that, after a stimulus, return to the original isomer presents a closed‐cycle of light‐harvesting, energy storage, and release. One challenge is to achieve a sufficiently high energy storage capacity. Here, we present efforts to tune the dihydroazulene/vinylheptafulvene (DHA/VHF) couple through loss/gain of aromaticity. Two derivatives were prepared, one with aromatic stabilization of DHA and the second of VHF. The consequences for the switching properties were elucidated. For the first type, sigmatropic rearrangements of DHA occurred upon irradiation. Formation of a VHF complex could be induced by a Lewis acid, but addition of H2O resulted in immediate regeneration of DHA. For the second type, the VHF was too stable to convert into DHA. Calculations support the results and provide new targets. We predict that by removing one of the two CN groups at C‐1 of the aromatic DHA, the heat storage capacity will be further increased, as will the life‐time of the VHF. Calculations also reveal that a CN group at the fulvene ring retards the back‐reaction, and we show synthetically that it can be introduced regioselectively.  相似文献   

16.
This paper evaluates the 2‐hydroxyazobenzene platform for tailoring proton concentration pulses and oscillations with monochromatic light. The easily prepared 2‐hydroxyazobenzenes exhibit large absorptions in the near‐UV range. Photoisomerization was investigated by UV/Vis absorption, 1H NMR spectroscopy, and steady‐state fluorescence emission. In the whole investigated series, the trans stereoisomer of the 2‐hydroxyazobenzene motif provides the corresponding cis derivative with an action cross section in the 103 M ?1 cm?1 range. At the same time, photoisomerization is accompanied by a significant pK drop of the phenol group. According to the phenyl‐substituent pattern, cis‐to‐trans thermal back‐isomerization can be tuned in the 10 ms–100 s range. Up to 2 units of reversible pH drops or pH oscillations on the 10 s timescale have been obtained by appropriately tailoring single‐wavelength illumination of 2‐hydroxyazobenzene solutions.  相似文献   

17.
18.
Light can play: Irradiation causes dramatic changes in the shape of rigid-rod polymers incorporating azobenzene photochromes in the main chain. The embedded photoswitches act as hinges, which upon light-induced isomerization lead to reversible shrinking and stretching of the polymer backbone (see scheme), resembling light-orchestrated macromolecular accordions.  相似文献   

19.
20.
The transfer of stereoinformation is at the heart of asymmetric reactions. By incorporating the natural monoterpene l ‐menthone into the backbone of a diarylethene, we achieved efficient chirality transfer upon photocyclization, resulting in the preferred formation of one major closed isomer in a diastereomeric ratio (d.r.) of 85:15. More significantly, we were able to completely reverse the diastereomeric outcome of the ring closure simply by altering the chemical environment or the irradiation conditions. As a result, we could selectively accumulate the less favored minor closed isomer, with remarkable d.r. values of >99:1 and 74:26, respectively. Computations revealed that a stability inversion after photocyclization is the basis for the observed unprecedented control over diastereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号