首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of the valuable advancements in the fabrication of transition-metal selenides (TMSs)-based hybrid structures, only single-metal selenides have been obtained through most of the present methods. Herein, a facile room-temperature self-polymerization and subsequent selenization strategy is proposed for the synthesis of bimetallic MoxW1−xSe2 nanosheets with expanded interlayers decorated with N-doped carbon-matrix assembled flowerlike hierarchical microspheres (MoxW1−xSe2/NC). Depending on the excellent coordination ability of dopamine with metal ions, self-formed flowerlike single precursors are harvested. The unique hybrid architecture benefits the penetration of the electrolyte, accelerates Na+ insertion/extraction kinetics, enhances electron-transfer ability, and alleviates the volume expansion and aggregation during cycling processes. Therefore, the bimetallic MoxW1−xSe2/NC electrode delivers high reversible capacities of 264 mA h g−1 at 1 A g−1 for 700 cycles, 204.4 mA h g−1 at 4 A g−1 for 1400 cycles, and 153.3 mA h g−1 at 8 A g−1 for 2000 cycles, as well as an excellent rate capability up to 10 A g−1 with a capacity of 188.9 mA h g−1. Our study offers an effective strategy to boost sodium storage performance through elaborate structural engineering.  相似文献   

2.
Polyoxometalates (POMs)-based materials, with high theoretical capacities and abundant reversible multi-electron redox properties, are considered as promising candidates in lithium-ion storage. However, the poor electronic conductivity, low specific surface area and high solubility in the electrolyte limited their practical applications. Herein, a double-shelled hollow PMo12−SiO2@N−C nanofiber (PMo12−SiO2@N−C, where PMo12 is [PMo12O40]3−, N−C is nitrogen-doped carbon) was fabricated for the first time by combining coaxial electrospinning technique, thermal treatment and electrostatic adsorption. As an anode material for LIBs, the PMo12−SiO2@N−C delivered an excellent specific capacity of 1641 mA h g−1 after 1000 cycles under 2 A g−1. The excellent electrochemical performance benefited from the unique double-shelled hollow structure of the material, in which the outermost N−C shell cannot only hinder the agglomeration of PMo12, but also improve its electronic conductivity. The SiO2 inner shell can efficiently avoid the loss of active components. The hollow structure can buffer the volume expansion and accelerate Li+ diffusion during lithiation/delithiation process. Moreover, PMo12 can greatly reduce charge-resistance and facilitate electron transfer of the entire composites, as evidenced by the EIS kinetics study and lithium-ion diffusion analysis. This work paves the way for the fabrication of novel POM-based LIBs anode materials with excellent lithium storage performance.  相似文献   

3.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   

4.
以气相法白炭黑(FS)为Si前驱体,通过镁热还原工艺和对获得的NPs-Si进行SiOx和C复合包覆,制备出NPs-Si@SiOx@C纳米复合结构,将其用作锂电池负极进行电化学性能测试。研究结果表明:镁热还原过程分两步进行,即SiO_2与Mg先生成Mg2Si中间相,Mg2Si继续与SiO_2反应生成Si的反应路径;根据此规律镁热还原气相法白炭黑的Si转化率达87.9%。电化学性能测试中NPs-Si@SiOx@C负极在2.0 A·g-1的电流密度下有1 300 mAh·g-1的容量平台,1 000次循环后的放电比容量为964.2mAh·g-1,容量保持率达75%。  相似文献   

5.
Nanostructured tin dioxide (SnO2) has emerged as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity (1494 mA h g−1) and excellent stability. Unfortunately, the rapid capacity fading and poor electrical conductivity of bulk SnO2 material restrict its practical application. Here, SnO2 nanospheres/reduced graphene oxide nanosheets (SRG) are fabricated through in-situ growth of carbon-coated SnO2 using template-based approach. The nanosheet structure with the external layer of about several nanometers thickness can not only accommodate the volume change of Sn lattice during cycling but also enhance the electrical conductivity effectively. Benefited from such design, the SRG composites could deliver an initial discharge capacity of 1212.3 mA h g−1 at 0.1 A g−1, outstanding cycling performance of 1335.6 mA h g−1 after 500 cycles at 1 A g−1, and superior rate capability of 502.1 mA h g−1 at 5 A g−1 after 10 cycles. Finally, it is believed that this method could provide a versatile and effective process to prepare other metal-oxide/reduced graphene oxide (rGO) 2D nanocomposites.  相似文献   

6.
Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2/C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2/C is formed by the aggregation of many small particles (20–40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2/C delivers superior rate performance (314.0 mA h g−1 at 20 A g−1), ultra-long cycle life (316.1 mA h g−1 at 10 A g−1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g−1 at 0.5 A g−1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2/C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.  相似文献   

7.
Porous core–shell CuCo2S4 nanospheres that exhibit a large specific surface area, sufficient inner space, and a nanoporous shell were synthesized through a facile solvothermal method. The diameter of the core–shell CuCo2S4 nanospheres is approximately 800 nm„ the radius of the core is about 265 nm and the thickness of the shell are approximately 45 nm, respectively. On the basis of the experimental results, the formation mechanism of the core–shell structure is also discussed. These CuCo2S4 nanospheres show excellent Li storage performance when used as anode material for lithium-ion batteries. This material delivers high reversible capacity of 773.7 mA h g−1 after 1000 cycles at a current density of 1 A g−1 and displays a stable capacity of 358.4 mA h g−1 after 1000 cycles even at a higher current density of 10 A g−1. The excellent Li storage performance, in terms of high reversible capacity, cycling performance, and rate capability, can be attributed to the synergistic effects of both the core and shell during Li+ ion insertion/extraction processes.  相似文献   

8.
To overcome the drawbacks of the structural instability and poor conductivity of SnO2-based anode materials, a hollow core–shell-structured SnO2@C@Co-NC (NC=N-doped carbon) composite was designed and synthesized by employing the heteroatom-doping and multiconfinement strategies. This composite material showed a much-reduced resistance to charge transfer and excellent cycling performance compared to the bare SnO2 nanoparticles and SnO2@C composites. The doped heteroatoms and heterostructure boost the charge transfer, and the porous structure shortens the Li-ion diffusion pathway. Also, the volume expansion of SnO2 NPs is accommodated by the hollow space and restricted by the multishell heteroatom-doped carbon framework. As a result, this structured anode material delivered a high initial capacity of 1559.1 mA h g−1 at 50 mA g−1 and an initial charge capacity of 627.2 mA h g−1 at 500 mA g−1. Moreover, the discharge capacity could be maintained at 410.8 mA h g−1 after 500 cycles with an attenuation rate of only 0.069 % per cycle. This multiconfined SnO2@C@Co-NC structure with superior energy density and durable lifespan is highly promising for the next-generation lithium-ion batteries.  相似文献   

9.
Iron-based anode materials, such as Fe2O3 and FeSe2 have attracted widespread attention for lithium-ion batteries due to their high capacities. However, the capacity decays seriously because of poor conductivity and severe volume expansion. Designing nanostructures combined with carbon are effective means to improve cycling stability. In this work, ultra-small Fe2O3 nanoparticles loaded on a carbon framework were synthesized through a one-step thermal decomposition of the commercial C15H21FeO6 [Iron (III) acetylacetonate], which could be served as the source of Fe, O, and C. As an anode material, the Fe2O3@C anode delivers a specific capacity of 747.8 mAh g−1 after 200 cycles at 200 mA g−1 and 577.8 mAh g−1 after 365 cycles at 500 mA g−1. When selenium powder was introduced into the reaction system, the FeSe2 nano-rods encapsulated in the carbon shell were obtained, which also displayed a relatively good performance in lithium storage capacity (852 mAh g−1 after 150 cycles under the current density of 100 mA·g−1). This study may provide an alternative way to prepare other carbon-composited metal compounds, such as FeNx@C, FePx@C, and FeSx@C, and found their applications in the field of electrochemistry.  相似文献   

10.
As two-dimensional (2D) materials, bismuth (Bi) has large interlayer spacing along c-axis (0.395 nm) which provides rich active sites for sodium ions, thus guaranteeing high sodium ion storage activity. However, its poor electrical conductivity, combined with its degraded cycling performance, restricts its practical application. Herein, Bi microsphere coated with nitrogen-doped carbon (Bi@NC) was synthesized. Owing to the unique Bi crystals and nitrogen-doped carbon layer, the obtained Bi@NC anode exhibited satisfactory cycling stability and superior rate capability. Moreover, after assembling Bi@NC anode with Na3V2(PO4)3@C cathode to full battery, excellent sodium storage performance was obtained (57 mA h g−1 after 2000 cycles at 1.0 A g−1).  相似文献   

11.
Silicon (Si)-based anode materials with suitable engineered nanostructures generally have improved lithium storage capabilities, which provide great promise for the electrochemical performance in lithium-ion batteries (LIBs). Herein, a metal–organic framework (MOF)-derived unique core–shell Si/SiOx@NC structure has been synthesized by a facile magnesio-thermic reduction, in which the Si and SiOx matrix were encapsulated by nitrogen (N)-doped carbon. Importantly, the well-designed nanostructure has enough space to accommodate the volume change during the lithiation/delithiation process. The conductive porous N-doped carbon was optimized through direct carbonization and reduction of SiO2 into Si/SiOx simultaneously. Benefiting from the core–shell structure, the synthesized product exhibited enhanced electrochemical performance as an anode material in LIBs. Particularly, the Si/SiOx@NC-650 anode showed the best reversible capacities up to 724 and 702 mAh g−1 even after 100 cycles. The excellent cycling stability of Si/SiOx@NC-650 may be attributed to the core–shell structure as well as the synergistic effect between the Si/SiOx and MOF-derived N-doped carbon.  相似文献   

12.
We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) measurements are performed to validate the low charge carrier resistance of the oxygen‐deficient TiOx. The resulting oxygen‐deficient TiOx battery anode exhibits a high reversible capacity (~180 mA h g?1 at a discharge/charge rate of 1 C/1 C after 400 cycles) and an excellent rate capability (~90 mA h g?1 even at a rate of 10 C). Also, the full cell, which is coupled with a LiCoO2 cathode material, exhibits an outstanding rate capability (>75 mA h g?1 at a rate of 3.0 C) and maintains a reversible capacity of over 100 mA h g?1 at a discharge/charge of 1 C/1 C for 300 cycles.  相似文献   

13.
A general and simple strategy is realized for the first time for the preparation of metal sulfide (MxSy) nanoparticles immobilized into N/S co-doped carbon (NSC) through a one-step pyrolysis method. The organic ligand 1,5-naphthalenedisulfonic acid in the metal–organic framework (MOF) precursor is used as a sulfur source, and metal ions are sulfurized in situ to form MxSy nanoparticles, resulting in the formation of MxSy/NSC (M=Fe, Co, Cu, Ni, Mn, Zn) composites. Benefiting from the MxSy nanoparticles and conductive carbon, a synergistic effect of the composite is achieved. For instance, the composite of Fe7S8/NSC as an anode displays excellent long-term cycling stability in lithium/sodium ion batteries. At 5 A g−1, large capacities of 645 mA h g−1 and 426.6 mA h g−1 can be retained after 1500 cycles for the lithium-ion battery and after 1000 cycles for the sodium-ion battery, respectively.  相似文献   

14.
Transition metal oxides have vastly limited practical application as electrode materials for lithium-ion batteries (LIBs) due to their rapid capacity decay. Here, a versatile strategy to mitigate the volume expansion and low conductivity of Fe3O4 by coating a thin carbon layer on the surface of Fe3O4 nanosheets (NSs) was employed. Owing to the 2D core–shell structure, the Fe3O4@C NSs exhibit significantly improved rate performance and cycle capability compared with bare Fe3O4 NSs. After 200 cycles, the discharge capacity at 0.5 A g−1 was 963 mA h g−1 (93 % retained). Moreover, the reaction mechanism of lithium storage was studied in detail by ex situ XRD and HRTEM. When coupled with a commercial LiFePO4 cathode, the resulting full cell retains a capacity of 133 mA h g−1 after 100 cycles at 0.1 A g−1, which demonstrates its superior energy storage performance. This work provides guidance for constructing 2D metal oxide/carbon composites with high performance and low cost for the field of energy storage.  相似文献   

15.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx-Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co−S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx-Vo-S to exhibit much superior OER activity. FeCoOx-Vo-S exhibits a mass activity of 2440.0 A g−1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec−1, indicative of its excellent charge transfer rate. When FeCoOx-Vo-S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm−2 and 406.0 mA cm−2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   

16.
Herein, FeS2@TiO2 nanotubes photocatalyst was prepared by electrochemical anodization method followed by successive ionic layer adsorption and reaction method, and then finally annealed in a tube furnace for homogenous crystallization. The surface morphology, elemental composition, optical properties, and crystalline structure of the prepared FeS2@TiO2 nanocomposite were found out by performing scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, and fluorescence spectroscopy, respectively, while bonds vibrations and various functional groups' presence were analyzed using Raman and Fourier transform infrared spectroscopy. A higher photocurrent density of 1.59 mA/cm2 at 0.3 V versus reference electrode of Ag/AgCl (1.23 V versus reversible hydrogen electrode) using 100 mW/cm2 intensive light source was shown by 15-FeS2@TiO2 nanotubes (uniformly loaded photoanode) while donor density (ND) of 3.68 × 10−13 cm−3 as compared to pure TiO2 NTs (0.09 mA/cm2), 05-FeS2@TiO2 NTs (0.19 mA/cm2), 10-FeS2@TiO2 NTs (0.53 mA/cm2) and 20-FeS2@TiO2 NTs (0.61 mA/cm2), respectively. The exceptional photoelectrochemical activity results were attributed to the homogenous integration of FeS2 that not only increase the charge separation but also, intensively interacted with the substrate (TiO2 nanotubes), which results in an excellent photoelectrochemical activity.  相似文献   

17.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure‐directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one‐pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium‐ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g?1 after 80 cycles at a current density of 200 mA g?1, and maintain a reversible capacity of 690 mA h g?1 after 200 cycles at a current density of 2000 mA g?1. The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.  相似文献   

18.
Metal-organic frameworks (MOFs) have been considered as potential oxygen evolution reaction (OER) electrocatalysts owning to their ultra-thin structure, adjustable composition, high surface area, and high porosity. Here, we designed and fabricated a vanadium-doped nickel organic framework (V1−x−NixMOF) system by using a facile two-step solvothermal method on nickel foam (NF). The doping of vanadium remarkably elevates the OER activity of V1−x−NixMOF, thus demonstrating better performance than the corresponding single metallic Ni-MOF, NiV-MOF and RuO2 catalysts at high current density (>400 mA cm−2). V0.09−Ni0.91MOF/NF provides a low overpotential of 235 mV and a small Tafel slope of 30.3 mV dec−1 at a current density of 10 mA cm−2. More importantly, a water-splitting device assembled with Pt/C/NF and V0.09−Ni0.91MOF/NF as cathode and anode yielded a cell voltage of 1.96 V@1000 mA cm−2, thereby outperforming the-state-of-the-art RuO2(+)||Pt/C(−). Our work sheds new insight on preparing stable, efficient OER electrocatalysts and a promising method for designing various MOF-based materials.  相似文献   

19.
Phosphorus-rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low-temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus-rich CuP2@C from a Cu-MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g−1 at 0.2 A g−1) and superior cycling stability (720 mAh g−1 after 600 cycles at 1.0 A g−1), showing the promising application of P-rich metal phosphides in lithium ion batteries.  相似文献   

20.
Biomimetic straw-like bundles of Co-doped Fe2O3 (SCF), with Co2+ incorporated into the lattice of α-Fe2O3, was fabricated through a cost-effective hydrothermal process and used as the anode material for lithium-ion batteries (LIBs). The SCF exhibited ultrahigh initial discharge specific capacity (1760.7 mA h−1 g−1 at 200 mA g−1) and cycling stability (with the capacity retention of 1268.3 mA h−1 g−1 after 350 cycles at 200 mA g−1). In addition, a superior rate capacity of 376.1 mA h−1 g−1 was obtained at a high current density of 4000 mA g−1. The remarkable electrochemical lithium storage of SCF is attributed to the Co-doping, which increases the unit cell volume and affects the whole structure. It makes the Li+ insertion–extraction process more flexible. Meanwhile, the distinctive straw-like bundle structure can accelerate Li ion diffusion and alleviate the huge volume expansion upon cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号