首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halogen‐bonding (XB) interactions were exploited in the solution‐phase assembly of anion‐templated pseudorotaxanes between an isophthalamide‐containing macrocycle and bromo‐ or iodo‐functionalised pyridinium threading components. 1H NMR spectroscopic titration investigations demonstrated that such XB interpenetrated assemblies are more stable than analogous hydrogen bonding (HB) pseudorotaxanes. The stability of the anion‐templated halogen‐bonded pseudorotaxane architectures was exploited in the preparation of new halogen‐bonding interlocked catenane species through a Grubbs’ ring‐closing metathesis (RCM) clipping methodology. The catenanes’ anion recognition properties in the competitive CDCl3/CD3OD 1:1 solvent mixture revealed selectivity for the heavier halides iodide and bromide over chloride and acetate.  相似文献   

2.
Anion sensing via either optical or electrochemical readouts has separately received enormous attention, however, a judicious combination of the advantages of both modalities remains unexplored. Toward this goal, we herein disclose a series of novel, redox-active, fluorescent, halogen bonding (XB) and hydrogen bonding (HB) BODIPY-based anion sensors, wherein the introduction of a ferrocene motif induces remarkable changes in the fluorescence response. Extensive fluorescence anion titration, lifetime and electrochemical studies reveal anion binding-induced emission modulation through intramolecular photoinduced electron transfer (PET), the magnitude of which is dependent on the nature of both the XB/HB donor and anion. Impressively, the XB sensor outperformed its HB congener in terms of anion binding strength and fluorescence switching magnitude, displaying significant fluorescence turn-OFF upon anion binding. In contrast, redox-inactive control receptors display a turn-ON response, highlighting the pronounced impact of the introduction of the redox-active ferrocene on the optical sensing performance. Additionally, the redox-active ferrocene motif also serves as an electrochemical reporter group, enabling voltammetric anion sensing in competitive solvents. The combined advantages of both sensing modalities were further exploited in a novel, proof-of-principle, fluorescence spectroelectrochemical anion sensing approach, enabling simultaneous and sensitive read out of optical and electrochemical responses in multiple oxidation states and at very low receptor concentration.  相似文献   

3.
The synthesis and anion binding properties of a new family of fluorescent halogen bonding (XB) macrocyclic halo-imidazolium receptors are described. The receptors contain chloro-, bromo-, and iodo-imidazolium motifs incorporated into a cyclic structure using naphthalene spacer groups. The large size of the iodine atom substituents resulted in the isolation of anti and syn conformers of the iodo-imidazoliophane, whereas the chloro- and bromo-imidazoliophane analogues exhibit solution dynamic conformational behavior. The syn iodo-imidazoliophane isomer forms novel dimeric isostructural XB complexes of 2:2 stoichiometry with bromide and iodide anions in the solid state. Solution phase DOSY NMR experiments indicate iodide recognition takes place via cooperative convergent XB-iodide 1:1 stoichiometric binding in aqueous solvent mixtures. (1)H NMR and fluorescence spectroscopic titration experiments with a variety of anions in the competitive CD(3)OD/D(2)O (9:1) aqueous solvent mixture demonstrated the bromo- and syn iodo-imidazoliophane XB receptors to bind selectively iodide and bromide respectively, and sense these halide anions exclusively via a fluorescence response. The protic-, chloro-, and anti iodo-imidazoliophane receptors proved to be ineffectual anion complexants in this aqueous methanolic solvent mixture. Computational DFT and molecular dynamics simulations corroborate the experimental observations that bromo- and syn iodo-imidazoliophane XB receptors form stable cooperative convergent XB associations with bromide and iodide.  相似文献   

4.
The covalent attachment of electron deficient perfluoroaryl substituents to a bis‐iodotriazole pyridinium group produces a remarkably potent halogen bonding donor motif for anion recognition in aqueous media. Such a motif also establishes halogen bonding anion templation as a highly efficient method for constructing a mechanically interlocked molecule in unprecedented near quantitative yield. The resulting bis‐perfluoroaryl substituted iodotriazole pyridinium axle containing halogen bonding [2]rotaxane host exhibits exceptionally strong halide binding affinities in competitive 50 % water containing aqueous media, by a factor of at least three orders of magnitude greater in comparison to a hydrogen bonding rotaxane host analogue. These observations further champion and advance halogen bonding as a powerful tool for recognizing anions in aqueous media.  相似文献   

5.
The synthesis and anion binding properties of the first rotaxane host system to bind and sense anions purely through halogen bonding, is described. Through a combination of polarized iodotriazole and iodotriazolium halogen bond donors, a three‐dimensional cavity is created for anion binding. This rotaxane incorporates a luminescent rhenium(I) bipyridyl metal sensor motif within the macrocycle component, thus enabling optical study of the anion binding properties. The rotaxane topology was confirmed by single‐crystal X‐ray structural analysis, demonstrating halogen bonding between the electrophilic iodine atoms and chloride anions. In 50 % H2O/CH3CN solvent mixtures the rotaxane host exhibits strong binding affinity and selectivity for chloride, bromide, and iodide over a range of oxoanions.  相似文献   

6.
The first examples of [2]catenanes capable of selective anion transport across a lipid bilayer are reported. The neutral halogen bonding (XB) [2]catenanes were prepared via a chloride template-directed strategy in an unprecedented demonstration of using XB⋅⋅⋅anion interactions to direct catenane assembly from all-neutral components. Anion binding experiments in aqueous-organic solvent media revealed strong halide over oxoanion selectivity, and a marked enhancement in the chloride and bromide affinities of the catenanes relative to their constituent macrocycles. The catenanes additionally displayed an anti-Hofmeister binding preference for bromide over the larger iodide anion, illustrating the efficacy of employing sigma-hole interactions in conjunction with the mechanical bond effect to tune receptor selectivity. Transmembrane anion transport studies conducted in POPC LUVs revealed that the catenanes were more effective anion transporters than the constituent macrocycles, with high chloride over hydroxide selectivity, which is critical to potential therapeutic applications of anionophores. Remarkably these outperform existing acyclic halogen bonding anionophores with regards to this selectivity. Record chloride over nitrate anion transport selectivity was also observed. This represents a rare example of the direct translation of intrinsic anion binding affinities to anion transport behaviour, and demonstrates the key role of the catenane mechanical bond effect for enhanced anion transport selectivity.  相似文献   

7.
Halogen bonding mediated electrochemical anion sensing has very recently been established as a potent platform for the selective and sensitive detection of anions, although the principles that govern binding and subsequent signal transduction remain poorly understood. Herein we address this challenge by providing a comprehensive study of novel redox-active halogen bonding (XB) and hydrogen bonding (HB) ferrocene-isophthalamide-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs). Under diffusive conditions the sensory performance of the XB sensor was significantly superior. In molecular films the XB and HB binding motifs both display a notably enhanced, but similar, response to specific anions. Importantly, the enhanced response of these films is rationalised by a consideration of the (interfacial) dielectric microenvironment. These effects, and the resolved relationship between anion binding and signal transduction, underpin an improved fundamental understanding of anion sensing at redox-active interfaces which will benefit not just the development of more potent, real-life relevant, sensors but also new tools to study host–guest interactions at interfaces.

Surface enhancement effects in the sensing of anions at redox-active molecular films are investigated in detail and rationalised based on a consideration of the dielectric binding microenvironment.  相似文献   

8.
A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. 1H NMR ion-pair titration experiments in CD3CN:CDCl3 solvent mixtures revealed a notable “switch-on“ of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.  相似文献   

9.
Both hydrogen bonding (HB) and halogen bonding (XB) are essentially electrostatic interactions, but whereas hydrogen bonding has a well‐documented record of stabilizing unstable anions, little is known about halogen bonding's ability to do so. Herein, we present a combined anion photoelectron spectroscopic and density functional theory study of the halogen bond‐stabilization of the pyrazine (Pz) anion, an unstable anion in isolation due to its neutral counterpart having a negative electron affinity (EA). The halogen bond formed between the σ‐hole on bromobenzene (BrPh) and the lone pair(s) of Pz significantly lowers the energies of the Pz(BrPh)1 and Pz(BrPh)2 anions relative to the neutral molecule, resulting in the emergence of a positive EA for the neutral complexes. As seen through its charge distribution and electrostatic potential analyses, the negative charge on Pz is diluted due to the XB. Thermodynamics reveals that the low temperature of the supersonic expansion plays a key role in forming these complexes.  相似文献   

10.
A detailed (1)H-NMR study of the anion binding properties of the 2-iodo-imidazolium receptor 1 in DMSO allows to fully attribute the observed affinities to strong charge-assisted C-I···X(-) halogen bonding (XB). Stronger binding was observed for oxoanions over halides. Phosphate, in particular, binds to 1 with an association constant of ca. 10(3) M(-1), which is particularly high for a single X-bond. A remarkably short C-I···O(-) contact is observed in the structure of the salt 1·H(2)PO(4)(-).  相似文献   

11.
卫洪清  晋卫军 《分析化学》2007,35(9):1381-1386
卤键是一种新的分子间非共价作用力,它存在于卤素原子(路易斯酸)和具有孤电子对的原子或π-电子体系(路易斯碱)之间,在超分子化学、材料科学、生物识别和药物设计等领域已经显示出独特的优势。本文主要从卤键的特征和在化学传感和分子识别中的应用以及发展前景等几方面进行了介绍,期望引起人们对卤键的更多关注。  相似文献   

12.
Whilst the exploitation of interlocked host frameworks for anion recognition is widely established, examples incorporating halogen bond donor groups are still relatively rare. Through the integration of a novel tetra(iodotriazole)-pyridinium motif into macrocycle and axle components, a family of halogen bonding catenane and rotaxanes are constructed for anion recognition studies in a competitive aqueous-organic solvent mixture. Importantly, the degree of anion selectivity displayed is dictated by the topological nature and charged state of the respective interlocked host cavity. All the interlocked hosts exhibit iodide anion selectivity over other halides and sulfate, with the level of discrimination being the greatest with the mono-cationic rotaxane. Arising from greater electrostatic interactions working in tandem with halogen bonding and hydrogen bonding, the di-cationic rotaxane displays stronger anion association at the expense of a relatively lower degree of iodide selectivity.  相似文献   

13.
14.
A systematic study on the anion‐binding properties of acyclic halogen‐ and hydrogen‐bonding bis‐triazolium carbazole receptors is described. The halide‐binding potency of halogen‐bonding bis‐iodotriazolium carbazole receptors was found to be far superior to their hydrogen‐bonding bis‐triazolium‐based analogues. This led to the synthesis of a mixed halogen‐ and hydrogen‐bonding rotaxane host containing a bis‐iodotriazolium carbazole axle component. The rotaxane’s anion recognition properties, determined by 1H NMR titration experiments in a competitive aqueous solvent mixture, demonstrated the preorganised halogen‐bonding interlocked host cavity to be halide‐selective, with a strong binding affinity for bromide.  相似文献   

15.
Weakening and leveling of the halogen bond (XB) between diiodoperfluoroalkane (DIPFA) and halide anions (X?, X = Cl, Br and I) are imposed by solvent polarity. The solvents involved in this system are classified into three groups according to the acceptor number (AN) and solvent HB acidity (α) and were studied in detail. In non-competitive solvents, the strength of C–I···X? XB is strongest, decreasing with electrostatic interaction in the order: C–I···Cl? > C–I···Br? > C–I···I?. However, in weakly competitive solvents, the XB strength is largely weakened. Further, in strongly competitive solvents, the XB strength is leveled with no change occurring with X?. This phenomenon can be attributed to the solvent effect. That is, the solvent can destabilize the DIPFA···X? XB. This was confirmed by the experiment showing that the XB was destroyed as very small amounts of water was added into the CH3CN solution of DIPFA and X?.  相似文献   

16.
A series of novel heteroditopic halogen bonding (XB) receptor functionalised silica based materials, containing mono- and bis-iodotriazole benzo-15-crown-5 groups are investigated for the cooperative binding and extraction of sodium halide ion-pair species from aqueous solution. Characterisation of the XB materials by CHN elemental analysis, 13C CP/MAS NMR and ATR-FTIR spectroscopies confirms and quantifies the successful incorporation of the ion-pair receptor frameworks to the silica material. ICP-MS solid-liquid extraction studies demonstrate the bidentate XB functionalised material is capable of NaI extraction from water. Importantly, cooperative XB-mediated sodium halide ion-pair binding is determined to be crucial to the material's extraction capabilities, impressively demonstrating a two-fold enhancement in sodium iodide extraction efficiency relative to a heteroditopic hydrogen bonding receptor functionalised silica material analogue.  相似文献   

17.
Sigma–hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma–hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host–guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.

Sigma–hole mediated detection of anions is rapidly emerging as a new paradigm in supramolecular sensor chemistry. Herein, we provide an overview of this field including halogen bonding and chalcogen bonding optical, electrochemical and other sensors.  相似文献   

18.
A new [2]rotaxane host system containing nitro-isophthalamide macrocycle and polyether functionalised pyridinium axle components is prepared via clipping and stoppering synthetic methodologies using chloride anion templation. After removing the chloride anion template, (1)H NMR titration experiments reveal the unique interlocked host cavity to be highly selective for binding chloride and bromide in preference to basic oxoanions in competitive aqueous solvent mixtures. The rotaxane host system proved to be a superior anion complexant in comparison to the individual macrocycle and axle components. The anion binding affinity of the novel rotaxane is also investigated via molecular dynamics simulations and in general the structural data obtained corroborates the experimental solution anion recognition behaviour.  相似文献   

19.
The synthesis and characterisation of a library of acyclic antimony(III) and bismuth(III) triaryl pnictogen bonding (PnB) receptor systems are reported. In the first-generation receptor series, quantitative 1H NMR chloride titration experiments in THF solvent media reveal halide anion binding potency is intimately correlated with both the electronic-withdrawing nature of the aryl- substituent and the polarisability of the PnB donor. Further extensive anion binding investigations with the most potent Sb- and Bi-based PnB receptors: 1⋅Sb2CF3 and 1⋅Bi2CF3 , reveal novel selectivity profiles, both displaying Cl selectivity relative to the heavier halides and, impressively, to a range of highly basic oxoanions. The synthesis and preliminary chloride anion binding studies of a series of novel tripodal tris-proto-triazole triaryl Sb(III) and Bi(III) mixed PnB-HB receptor systems are also described. Whereas parent triphenyl Sb(III) and Bi(III) compounds are incapable of binding Cl in THF solvent media, the PnB-triazole HB host systems exhibit notable halide affinity.  相似文献   

20.
Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen‐based Lewis acids) and anions seem counterintuitive. Such “anti‐electrostatic” XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self‐association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti‐electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self‐association of the anionic XB donors was observed in solid‐state structures, resulting in dimers, trimers, and infinite chains. In addition, co‐crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14–21 % shorter than the sum of the van der Waals radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号