首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
TET family enzymes are known for oxidation of the 5-methyl substituent on 5-methylcytosine (5mC) in DNA. 5mC oxidation generates the stable base 5-hydroxymethylcytosine (5hmC), starting an indirect, multi-step process that ends with reversion of 5mC to unmodified cytosine. While probing the nucleobase determinants of 5mC recognition, we discovered that TET enzymes are also proficient as direct N-demethylases of cytosine bases. We find that N-demethylase activity can be readily observed on substrates lacking a 5-methyl group and, remarkably, TET enzymes can be similarly proficient in either oxidation of 5mC or demethylation of N4-methyl substituents. Our results indicate that TET enzymes can act as both direct and indirect demethylases, highlight the active-site plasticity of these FeII/α-ketoglutarate-dependent dioxygenases, and suggest activity on unexplored substrates that could reveal new TET biology.  相似文献   

2.
5-Formylcytosine (fC or (5-CHO)dC) and 5-carboxylcytosine (caC or (5-COOH)dC) have recently been identified as constituents of mammalian DNA. The nucleosides are formed from 5-methylcytosine (mC or (5-Me)dC) via 5-hydroxymethylcytosine (hmC or (5-HOMe)dC) and are possible intermediates of an active DNA demethylation process. Here we show efficient syntheses of phosphoramidites which enable the synthesis of DNA strands containing these cytosine modifications based on Pd(0)-catalyzed functionalization of 5-iododeoxycytidine. The first crystal structure of fC reveals the existence of an intramolecular H-bond between the exocyclic amine and the formyl group, which controls the conformation of the formyl substituent. Using a newly designed in vitro mutagenicity assay we show that fC and caC are only marginally mutagenic, which is a prerequisite for the bases to function as epigenetic control units.  相似文献   

3.
A simple, rapid and accurate method for the simultaneous determination of four purine and pyrimidine bases (cytosine, 5-methylcytosine, adenine and N6-methyladenine) has been developed. The quantitative determination of these bases was accomplished by ion chromatography (IC) with direct conductivity detection (CD) based on their ionization in acidic medium without chemical suppression. The recovery of cytosine, 5-methylcytosine, and adenine in calf thymus DNA was more than 98% (n=3) and the relative standard deviation (RSD, n=5) less than 2.4%. In a single chromatographic run, the four bases could be separated and determined in less than 10 min. The detection limits were found to be 0.05 microg/mL for cytosine, 0.08 microg/mL for 5-methylcytosine, 0.07 microg/mL for adenine, and 0.07 microg/mL for N6-methyladenine. Linear ranges were 0.2-95.1 microg/mL for cytosine (r2=0.9996), 0.3-196.6 microg/mL for 5-methylcytosine (r2=0.9994), 0.3-105.5 microg/mL for adenine (r2=0.9998), and 0.3-159.1 microg/mL for N6-methyladenine (r2=0.9999). With the proposed method, purine and pyrimidine bases could be successfully detected in calf thymus DNA. We also determined these bases in calf thymus DNA using RP-HPLC. Compared to RP-HPLC, the IC method offers advantages such as high selectivity and simple mobile phase.  相似文献   

4.
Cyclobutane pyrimidine dimer (CPD) is a photoproduct formed by two stacked pyrimidine bases through a cycloaddition reaction upon irradiation. Owing to its close association with skin cancer, the mechanism of CPD formation has been studied thoroughly. Among many aspects of CPD, its formation involving 5-methylcytosine (5mC) has been of special interest because the CPD yield is known to increase with C5-methylation of cytosine. In this work, high-level quantum mechanics/molecular mechanics (QM/MM) calculations are used to examine a previously experimentally detected pathway for CPD formation in hetero (thymine-cytosine and thymine-5mC) dipyrimidines, which is facilitated through intersystem crossing in thymine and formation of a triplet biradical intermediate. A DNA duplex model system containing a core sequence TmCG or TCG is used. The stabilization of a radical center in the biradical intermediate by the methyl group of 5mC can lead to increased CPD yield in TmCG compared with its non-methylated counterpart, TCG, thereby suggesting the existence of a new pathway of CPD formation enhanced by 5mC.  相似文献   

5.
The UV photoreactivity of different pyrimidine DNA/RNA nucleobases along the singlet manifold leading to the formation of cyclobutane pyrimidine dimers has been studied by using the CASPT2 level of theory. The initially irradiated singlet state promotes the formation of excimers between pairs of properly oriented nucleobases through the overlap between the ?? structures of two stacked nucleobases. The system evolves then to the formation of cyclobutane pyrimidine dimers via a shearing-type conical intersection activating a [2?+?2] photocycloaddition mechanism. The relative location of stable excimer conformations or alternative decay channels with respect to the reactive degeneracy region explains the differences in the photoproduction efficiency observed in the experiments for different nucleobases sequences. A comparative analysis of the main structural parameters and energetic profiles in the singlet manifold is carried out for thymine, uracil, cytosine, and 5-methylcytosine homodimers. Thymine and uracil dimers display the most favorable paths, in contrast to cytosine. Methylation of the nucleobases seems to increase the probability for dimerization.  相似文献   

6.
DNA methylation is a crucial epigenetic mark connected to conventionally changing the DNA bases, typically by adding methyl groups into DNA bases. Methylation of cytosine at the C5 position (5-methylcytosine) occurs mostly in the context of cytosine-phosphate-guanine dinucleotides, the methylation of which has important impacts on gene regulation and expression. However, the mechanistic details of this reaction are still debatable concerning the concertedness of the key reaction steps and the roles played by the base that abstracts the proton in the β-elimination and water molecules at the active site. To gain a deeper insight into the formation of 5-mehtylcytosine, an extensive density functional theory (DFT) study was performed with the B3LYP functional in conjunction with different basis sets. Our study has clearly established the mechanistic details of this methylation approach, based on which the roles of conserved active site residues, such as glutamic acid and waters, are well understood. Our results show that the reaction of 5-methylcytosine follows a concerted mechanism in which water molecules are critically involved. Moreover, arginine and alanine give more significant catalytic effects than glutamic acid on the 5-methylcytosine process. Considering the effect of Alanine, Arginine, and one water bridging molecule, the activation energy is 31 kJ mol?1 calculated at B3LYP/6-31G(d) level of theory.  相似文献   

7.
We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.  相似文献   

8.
One-electron oxidation of duplex DNA generates a radical cation that migrates through the nucleobases until it is trapped by an irreversible reaction with water or oxygen. The trapping site is often a GG step, because this site has a relatively low ionization potential and this causes the radical cation to pause there momentarily. Modifications to guanine that lower its ionization potential convert it to a better trap for the radical cation. One such modification is the formation of the Watson-Crick base pair with cytosine, which is reported to very significantly decrease its ionization potential. Methylation of cytosine to form 5-methylcytosine (5-MeC) is a naturally occurring reaction in genomic DNA that may be associated with regions of enhanced oxidative damage. The G.5-MeC base pair is reported to be more rapidly oxidized than normal G.C base pairs. We examined the oxidation of DNA oligomers that were substituted in part with 5-MeC. Irradiation of a covalently linked anthraquinone group injects a radical cation into the DNA and results in strand cleavage after piperidine treatment. For the sequences examined, substitution of 5-MeC for C has no measurable effect on the reactions. Cytosine methylation is not a general cause of enhanced oxidative damage in DNA.  相似文献   

9.
A new cellulose derivative, octyl-modified quaternized cellulose (OMQC), was synthesized and used as electrolyte additive for the analysis of 5-methylcytosine by capillary electrophoresis with UV detection. While added in the background electrolyte, OMQC carrying octyl groups and quaternary ammonium groups exhibited dynamic coating ability. Capillary coated with OMQC was able to generate a stable anodal electro-osmotic flow even at pH 12.0. After several running conditions were optimized, a new method for quantification of genomic methylation level was developed on the basis of hydrolysis of DNA by formic acid and separation of nucleic acid bases by capillary electrophoresis. Cytosine and 5-methylcytosine were separated with a resolution near 4.0 in less than 10 min. The detection limits (S/N?=?3) were 1.1 and 1.5 μg/mL for cytosine and 5-methylcytosine, respectively.  相似文献   

10.
Core-level X-ray photoemission and near-edge X-ray absorption fine structure spectra of 5-methylcytosine, 5-fluorocytosine, and isocytosine are presented and discussed with the aid of high-level ab initio calculations. The effects of the methylation, halogenation, and isomerization on the relative stabilities of cytosine tautomers are clearly identified spectroscopically. The hydroxy-oxo tautomeric forms of these molecules have been identified, and their quantitative populations at the experimental temperature are calculated and compared with the experimental results and with previous calculations. The calculated values of Gibbs free energy and Boltzmann population ratios are in good agreement with the experimental results characterizing tautomer equilibrium.  相似文献   

11.
Acyclic, achiral nucleoside derivatives 1b-e of adenine, cytosine, 5-methylcytosine, and guanine, containing a 3-hydroxy-2-(hydroxymethyl)prop-1-enyl group on N-1 or N-9, have been prepared analogously to the previously described thymine derivative 1a. In contrast to the adenine and guanine derivatives, the cytosine derivative 9 was unstable, and was obtained in a low yield due to side reactions. These include cleavage of the propenyl group from the base, and the formation of a bicyclic compound. The thymine derivative, although stable under neutral conditions, likewise underwent a reversible cyclization reaction (Michael addition) in the presence of acids or bases. The 5-methylcytosine derivative was stable under neutral and basic conditions. Four other nucleoside derivatives 26a-d containing a 2,3-dihydroxy-2-(hydroxymethyl)propyl group on N-1 or N-9, three of which are new, have likewise been prepared. All compounds were evaluated as antiviral agents against HIV-1 and HSV-1 but were devoid of antiviral activity.  相似文献   

12.
The determination of the relative methylation in DNA tumor samples, in order to evaluate the activity of some anti-cancer drugs, has become a very important issue in the clinical field. Capillary electrophoresis (CE) applications in this area have been done previously but no good separation for model samples or tumor samples has been reported. In this work, the CE conditions have been optimized in order to obtain baseline separation and efficient peaks for cytosine and 5-methylcytosine in both, standard mixtures and actual tumor samples; other bases (adenine, uracil, guanine, and thymine) have also been integrated in the optimization studies. More efficient peaks and shorter analysis time compared with the already reported conditions have been obtained employing a fused-silica capillary (75 microm inner diameter) of 44.5 cm effective length, 20 mM carbonate buffer (pH 9.6) plus 80 mM sodium dodecyl sulfate, a separation voltage of 20 kV, and detection at 223 nm.  相似文献   

13.
DNA甲基化-非甲基化碱基间堆积作用的理论研究   总被引:1,自引:0,他引:1  
运用二级Mфller-Plesset(MP2)理论方法和cc-pVDZ基组优化了6-甲基鸟嘌呤(O6-MethylG),4-甲基胸腺嘧啶(O4-MethylT)以及5-甲基胞嘧啶(C5-MethylC)与DNA碱基鸟嘌呤(G),腺嘌呤(A),胞嘧啶(C),胸腺嘧啶(T)之间的堆积构型.在MP2/aug-cc-pVXZ//MP2/cc-pVDZ(X=D,T)水平上,采用完全基组外推方法校正了堆积碱基对间的相互作用能,并用完全均衡校正法(CP)校正了基组重叠误差(BSSE).MP2计算结果表明,DNA碱基甲基化使得嘧啶-嘧啶、嘧啶-嘌呤堆积碱基间的平行旋转角发生明显改变,并使堆积碱基间的相互作用能增大.在MP2/cc-pVDZ计算级别上得到了各堆积碱基对的全电子波函数,并用分子中的原子理论(AIM)分析了堆积碱基对间的弱相互作用.AIM分析结果显示,甲基化增强了堆积碱基间的π-π作用,且甲基氢与相邻碱基间形成H2CH…X(X=O,N,CH3,NH2)等类型的氢键.甲基化损伤使碱基间重叠程度增大、π-π作用增强以及堆积碱基间形成多个氢键,是堆积作用能增加的主要原因.  相似文献   

14.
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.  相似文献   

15.
An artificial phosphopeptide recognized the difference between methylated and hydroxymethylated cytosines in DNA. The Sp1 zinc finger peptide substituted by phosphotyrosine effectively discriminated between 5-methylcytosine, 5-hydroxymethylcytosine ((hm)C) and unmethylated cytosine. The DNA recognition properties of the peptide differ from those of other chemicals that detect (hm)C.  相似文献   

16.
Alterations in global DNA methylation are implicated in several pathobiological processes. The tissues stored as paraffin blocks represent an important source of DNA for retrospective genetic and epigenetic analysis on a large scale. Therefore, we developed the first capillary electrophoresis method able to measure global methylation in formalin-fixed, paraffin-embedded (FFPE) DNA extracts. A field-amplified sample injection capillary electrophoresis method with UV detection for the separation and quantification of cytosine and 5-methylcytosine released following DNA hydrolysis by means of formic acid was employed. Analytes were baseline-separated within 8 min by using 300 mM tris(hydroxymethyl)aminomethane phosphate pH 3.75 as the running buffer. With use of electrokinetic injection the limit of detection (LOD) in real sample was 0.1 nM, thus improving by about 400-fold the LOD of the previously described methods based on capillary electrophoresis. Sample extraction and purification were optimized so that evaluation of the DNA methylation degree was possible starting from 0.5-1 μg of DNA with intra- and interassay relative standard deviations for the 5-methylcytosine to total cytosine ratio of 2.0 and 3.2%, respectively. Because of its high accuracy and throughput, our method will be useful for large-scale applications to determine the implications of genomic DNA methylation levels in tumorigenesis.  相似文献   

17.
DNA strands containing a 5-hydroxymethylcytosine ((hm)C), which have recently been found in neuron cells and embryonic stem cells, were synthesized through a facile synthetic technique. The (hm)C-containing strands were efficiently oxidized at (hm)C using an osmium oxidation assay. The (hm)C was oxidized as easily as 5-methylcytosine, which can be distinguished from unmethylated cytosine.  相似文献   

18.
Tungsten oxidation worked as a simple chemical reaction for the effective detection of 5-hydroxymethylcytosine in DNA, distinguishing it from its epigenetic precursors, 5-methylcytosine and unmethylated cytosine. The tungsten-oxidation product obtained from 5-hydroxymethylcytosine was trihydroxylated thymine and was detected as a cleavage band in gel electrophoresis after treatment with hot piperidine.  相似文献   

19.
The photoinduced exchange reactions of cytosine (Ia) and 5-methylcytosine (IIa) with N alpha-acetyl-L-lysine, a derivative of the common amino acid L-lysine, were studied. These reactions of Ia and IIa at pH 7.5 produce, respectively, 2-N-acetylamino-6-(1-cytosinyl)hexanoic acid (Ib) and 2-N-acetylamino-6-(1-(5-methylcytosinyl]hexanoic acid (IIb) as major final products. In addition, small amounts of the corresponding deamination products were formed in the 5-methylcytosine-N alpha-acetyl-L-lysine and cytosine-N alpha-acetyl-L-lysine systems, namely 2-N-acetylamino-6-(1-thyminyl)-hexanoic acid and 2-N-acetylamino-6-(1-uracilyl)hexanoic acid. The compounds Ib and IIb were deacetylated by acid hydrolysis to yield the corresponding lysine products: 2-amino-6-(1-cytosinyl)hexanoic acid (Ic) and 2-amino-6-(1-(5-methylcytosinyl]hexanoic acid (IIc). The compound Ic was identified as a product in the photoreaction of cytosine with L-lysine at near neutral pH, while IIc is found as a product in the corresponding reaction of 5-methylcytosine. The occurrence of the above photoexchange reactions at pH values near those found in physiological systems could have biological implications; in particular, our observations suggest that cytosine and 5-methylcytosine residues, contained in DNA, might react with the epsilon-amino groups of lysine residues in proteins upon UV irradiation of nucleosomes and other DNA-protein complexes under physiological conditions.  相似文献   

20.
The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface‐enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label‐free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5‐methylated cytosine and N6‐methylated Adenine) in duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号