首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-ligand self-assembly to attain the AgI-N-heterocyclic carbene (NHC)-built hexanuclear organometallic cages of composition [Ag6( 3 a , b )4](PF6)6 from the reaction of benzimidazole-derived tris(azolium) salts [H3- 3 a , b ](PF6)3 with Ag2O was achieved. The molecular structures of the cages were established by X-ray diffraction studies along with NMR and MS analyses. The existence of a single assembly in solution was supported by diffusion-ordered spectroscopy (DOSY) 1H NMR spectra. Further, transmetalation reactions of these self-assembled complexes, [Ag6( 3 a , b )4](PF6)6, with CuI/AuI-ions provided various coinage metal-NHC complexes having diverse molecular compositions, which included the first example of a hexanuclear CuI-dodecacarbene complex, [Cu6( 3 b )4](PF6)6.  相似文献   

2.
For metal-mediated host compounds, the development of strategies to reduce symmetry and introduce multiple functionalities in a non-statistical way is a challenging task. We show that the introduction of steric stress around the coordination environment of square-planar PdII cations and bis-monodentate nitrogen donor ligands allows to control the size and shape of the assembled product, from [Pd2L4] cages over [Pd2L3] bowl-shaped structures to [Pd2L2] rings. Therefore, banana-shaped ligand backbones were equipped with pyridines, two different quinoline isomers and acridine, the latter three introducing steric congestion through hydrogen substituents on annelated benzene rings. Differing behavior of the four resulting hosts towards the binding of C60 and C70 fullerenes was studied and related to structural differences by NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction. The three cages based on pyridine, 6-quinoline or 3-quinoline donors were found to either bind C60, C70 or no fullerene at all.  相似文献   

3.
A series of metal‐mediated cages, having multiple cavities, was synthesized from PdII cations and tris‐ or tetrakis‐monodentate bridging ligands and characterized by NMR spectroscopy, mass spectrometry, and X‐ray methods. The peanut‐shaped [Pd3L14] cage deriving from the tris‐monodentate ligand L1 could be quantitatively converted into its interpenetrated [5Cl@Pd6L18] dimer featuring a linear {[Pd‐Cl‐]5Pd} stack as an unprecedented structural motif upon addition of chloride anions. Small‐angle neutron scattering (SANS) experiments showed that the cigar‐shaped assembly with a length of 3.7 nm aggregates into mono‐layered discs of 14 nm diameter via solvophobic interactions between the hexyl sidechains. The hepta‐cationic [5Cl@Pd6L18] cage was found to interact with polyanionic oligonucleotide double‐strands under dissolution of the aggregates in water, rendering the compound class interesting for applications based on non‐covalent DNA binding.  相似文献   

4.
5.
The systematic assembly of supramolecular arrangements is a persistent challenge in modern coordination chemistry, especially where further aspects of complexity are concerned, as in the case of large molecular mixed-metal arrangements. One targeted approach to such heterometallic complexes is to engineer metal-based donor ligands of the correct geometry to build 3D arrangements upon coordination to other metals. This simple idea has, however, only rarely been applied to main group metal-based ligand systems. Here, we show that the new, bench-stable tris(3-pyridyl)stannane ligand PhSn(3-Py)3 (3-Py=3-pyridyl) provides simple access to a range of heterometallic SnIV/transition metal complexes, and that the presence of weakly coordinating counter anions can be used to build discrete molecular arrangements involving anion encapsulation. This work therefore provides a building strategy in this area, which parallels that of supramolecular transition metal chemistry.  相似文献   

6.
A modular approach has been developed for the synthesis of rigid linear di‐ and tritopic ligands based on a fused [6]polynorbornane scaffold. The design provides up to three sites for installing functionality, including both “ends” and a “central” position with the advantage that each region can be independently addressed during synthesis. To illustrate the utility of the approach, both pyridyl and picolyl units were incorporated to provide six new ligands, with centers and ends either matched or mismatched. Indeed, both [M2L4] cages with endohedral functionality and [M3L4] complexes were cleanly produced from these ligands with assembled structures confirmed by using 1H NMR spectroscopy, HRMS, and molecular modelling.  相似文献   

7.
8.
1INTRODUCTION Atom transfer radical addition is an efficient me-thod for carbon-carbon bond formation in organic synthesis[1,2].In some of these reactions,a transi-tion-metal catalyst acts as a carrier of the halogen atom in a reversible redox process.The transition-metal-catalyzed has been successfully used to con-trol radical polymerization[3].In the process,the transition-metal species initially abstracts halogen atom X from organic halide to form oxidized species and carbon-centered r…  相似文献   

9.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

10.
Luminescent copper(I)-based compounds have recently attracted much attention since they can reach very high emission quantum yields. Interestingly, Cu(I) clusters can also be emissive, and the extension from small molecules to larger architecture could represent the first step towards novel materials that could be obtained by programming the units to undergo self-assembly. However, for Cu(I) compounds the formation of supramolecular systems is challenging due to the coordinative diversity of copper centers. This works shows that this diversity can be exploited in the construction of responsive systems. In detail, the changes in the emissive profile of different aggregates formed in water by phosphine-thioether copper(I) derivatives were followed. Our results demonstrate that the self-assembly and disassembly of Cu(I)-based coordination polymeric nanoparticles (CPNs) is sensitive to solvent composition. The solvent-induced changes are related to modifications in the coordination sphere of copper at the molecular level, which alters not only the emission profile but also the morphology of the aggregates. Our findings are expected to inspire the construction of smart supramolecular systems based on dynamic coordinative metal centers.  相似文献   

11.
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle ( 2 ) and a trigonal prism ( 3 ) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3)2Pt(OTf)2-based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI ( 1 ), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2 , however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.  相似文献   

12.
13.
14.
Chiral self-recognition and self-discrimination are of vital importance to biological processes. In this work, 2D regular rhombic nanocrystals ( RS -NC ) were fabricated through heterochiral self-discrimination between chiral polynuclear gold(I)-sulfido complex enantiomers, [(R-BINAP)4Au10S4]Cl2 ( R -Au10 ) and [(S-BINAP)4Au10S4]Cl2 ( S -Au10 ), in MeOH without the need for any surfactants or templates. The monitoring of nanocrystals (NCs) formation by TEM and DLS has uncovered the self-assembly process and shape evolution of the NCs and revealed a screw-dislocation dictated spiral growth of the rhombic NCs. Upon addition of chiral anions, the morphology of the gold NCs was found to change from rhombic to strip and quasi-hexagonal nanosheets, arising from reverse and rotational layer-by-layer stacking to give the bilayer NCs. By applying a high temperature, rhombic gold nanoisland films were obtained from the rhombic NCs. The current study has provided a simple strategy towards the construction of regular geometric 2D NCs as well as their chiral anion-tuned and reverse and rotational stacking-determined morphology change by heterochiral self-discrimination.  相似文献   

15.
合成了氮烃基化三角架tren配体L·3HCl(L= [N, N′, N″ 三(4 甲氧苄基) 三(2 氨乙基)胺] ),并得到了其单核Ag(I)配合物 [AgL]NO3.晶体结构研究表明Ag(I)离子被三角架配体L四齿螯合,与罕见的笼形结构相似,NOˉ根没有参加配位,而作为氢键的受体将分子组装成二维超分子结构.  相似文献   

16.
本文利用水热法合成了两个新型一价铜配合物[Cu2(ophen)2]·H2O的类同质多晶结构(1a和1β)和一个混合价的铜配合物[Cu2(obpy)2(NO3)·H2O(2).晶体结构分析表明:1a显现出于无水的类似物[Cu2(ophen)2]相同的堆积方式,1β则形成出新奇的空间堆积.混合价化合物2是完全离域的,通过氢键集聚体[(H2O)2(NO3-)2]将两个[Cu2(obpy)2]+单元连接起来形成哑铃状的四核结构.  相似文献   

17.
A Cu(II) coordination complex ( 1 ) with Schiff ligand derived from diaminomaleonitrile was synthesized and characterized, in which the ligand is rigid, planar and conjugated. The complex 1 displays an interesting fluorescent property relative to solvents which can be turned‐on by CH2Cl2 and CHCl3 solvent molecules. The mechanism of this selective fluorescence emission has been studied based on the crystal structure and the spectrum analysis. The tuning on and off fluorescence of complex 1 can be controlled by the process of supramolecular aggregation/deaggregation in different solvents.  相似文献   

18.
用手性的V形双齿配体N,N''-((1R,2R)-1,2-二取代环己二胺)双(N-苯甲酸(3-吡啶亚甲基)酰胺(1R,2R)-3-bcpb)和不同的Cu(II)盐反应,组装成2个新的手性Cu(II)配位聚合物{[Cu((1R,2R)-3-bcpb)]Cl2}n1)和{[Cu((1R,2R)-3-bcpb)2](ClO42·2H2O·2CH3OH}n2)。其中1是一维链状结构,2具有二维(4,4)网络拓扑。溶剂热条件下,在甲醇溶剂体系中,通过引入AgClO4,1能转换成2,同时通过加入NaCl,2也能转换成1。圆二色谱和二次谐波响应测试验证了它们具有结构上的手性。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号