首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.  相似文献   

2.
Simple discotic cores functionalized with reactive arms have been assembled into two‐ and three‐tiered covalent stacks through imine formation. The targets are obtained in good yields, but competing formation of misassembled byproducts highlights some of the challenges inherent to the thermodynamically controlled assembly of rigid, compact, three‐dimensional architectures. The structures comprise a central stack of arenes surrounded by a triple helix of interconnected arms. The racemization rate is strongly dependent on the number of tiers, suggesting cooperative conformational coupling in these multi‐tiered structures.  相似文献   

3.
Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co‐workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment. The supramolecular compartments can be reversibly removed and re‐formed to reconstitute the hybrid structure. The obtained soft materials can serve as functional platforms for molecular delivery or self‐repairing materials.

  相似文献   


4.
Dynamic covalent chemistry has rapidly become an important approach to access supramolecular structures. While the products generated in these reactions are held together by covalent bonds, the reversible nature of the transformations can limit the utility of many these systems in creating robust materials. We describe herein a method to form stable and commonly employed amide bonds by exploiting the reversible coupling of imines and acyl chlorides. The reaction employs easily accessible reagents, is dynamic under ambient conditions, without catalysts, and can be trapped with simple hydrolysis. This offers an approach to create broad families of amide products under thermodynamic control, including the selective formation of amide macrocycles or polymers.  相似文献   

5.
利用氢键驱动的“之”字型芳酰胺为“引导”组分,本文报道了三个单环、双环及三环分子的动态共价键自组装。单环分子是一个四氨基衍生物,从“U”-型二醛和卟啉二胺的2+2缩合后经NaBH3CN还原制备。而双环及三环分子以刚性的三氨及四氨寡聚体为模板,从两个六组分反应制备得到。  相似文献   

6.
A two‐dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir–Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine‐linked chemical structure of the obtained monolayer was characterized by tip‐enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure–property relationships.  相似文献   

7.
8.
Despite heparin being the most widely used macromolecular drug, the design of small‐molecule ligands to modulate its effects has been hampered by the structural properties of this polyanionic polysaccharide. Now a dynamic covalent selection approach is used to identify a new ligand for heparin, assembled from extremely simple building blocks. The amplified molecule strongly binds to heparin (KD in the low μm range, ITC) by a combination of electrostatic, hydrogen bonding, and CH–π interactions as shown by NMR and molecular modeling. Moreover, this ligand reverts the inhibitory effect of heparin within an enzymatic cascade reaction related to blood coagulation. This study demonstrates the power of dynamic covalent chemistry for the discovery of new modulators of biologically relevant glycosaminoglycans.  相似文献   

9.
Existing methods for the covalent functionalization of nanoparticles rely on kinetically controlled reactions, and largely lack the sophistication of the preeminent oligonucleotide‐based noncovalent strategies. Here we report the application of dynamic covalent chemistry for the reversible modification of nanoparticle (NP) surface functionality, combining the benefits of non‐biomolecular covalent chemistry with the favorable features of equilibrium processes. A homogeneous monolayer of nanoparticle‐bound hydrazones can undergo quantitative dynamic covalent exchange. The pseudomolecular nature of the NP system allows for the in situ characterization of surface‐bound species, and real‐time tracking of the exchange reactions. Furthermore, dynamic covalent exchange offers a simple approach for reversibly switching—and subtly tuning—NP properties such as solvophilicity.  相似文献   

10.
One area of supramolecular chemistry involves the synthesis of discrete three‐dimensional molecules or supramolecular aggregates through the coordination of metals. This field also concerns the chemistry of supramolecular cage compounds constructed through the use of such coordination bonds. To date, there exists a broad variety of supramolecular cage compounds; however, analogous organic cage compounds formed with only covalent bonds are relatively rare. Recent progress in this field can be attributed to important advances, not least the application of dynamic covalent chemistry. This concept makes it possible to start from readily available precursors, and in general allows the synthesis of cage compounds in fewer steps and usually higher yields.  相似文献   

11.
Quantitatively predicting the reactivity of dynamic covalent reaction is essential to understand and rationally design complex structures and reaction networks. Herein, the reactivity of aldehydes and amines in various rapid imine formation in aqueous solution by microfluidic NMR spectroscopy was quantified. Investigation of reaction kinetics allowed to quantify the forward rate constants k+ by an empirical equation, of which three independent parameters were introduced as reactivity parameters of aldehydes (SE, E) and amines (N). Furthermore, these reactivity parameters were successfully used to predict the unknown forward rate constants of imine formation. Finally, two competitive reaction networks were rationally designed based on the proposed reactivity parameters. Our work has demonstrated the capability of microfluidic NMR spectroscopy in quantifying the kinetics of label-free chemical reactions, especially rapid reactions that are complete in minutes.  相似文献   

12.
The development of chemical transaminations as a new type of dynamic covalent reaction is described. The key 1,3‐proton shift is under complete catalytic control and can be conducted orthogonally to, or simultaneous with, transimination in the presence of an amine to rapidly yield two‐dimensional dynamic systems with a high degree of complexity evolution. The transamination–transimination systems are proven to be fully reversible, stable over several days, compatible with a range of functional groups, and highly tunable. Kinetic studies show transamination to be the rate‐limiting reaction in the network. Furthermore, it was discovered that readily available quinuclidine is a highly potent catalyst for aldimine transaminations. This study demonstrates how connected dynamic reactions give rise to significantly larger systems than the unconnected counterparts, and shows how reversible isomerizations can be utilized as an effective diversity‐generating element.  相似文献   

13.
Multicomponent surface architectures are introduced that operate with three different dynamic covalent bonds. Disulfide exchange under basic conditions accounts for the growth of π stacks on solid surfaces. Hydrazone exchange under acidic conditions is used to add a second coaxial string or stack, and boronic ester exchange under neutral conditions is used to co‐align a third one. The newly introduced boronic ester exchange chemistry is compatible with stack and string exchange without interference from the orthogonal hydrazone and disulfide exchange. The functional relevance of surface architectures with three different dynamic covalent bonds is exemplified with the detection of polyphenol natural products, such as epigallocatechin gallate, in competition experiments with alizarin red. These results describe synthetic strategies to create functional systems of unprecedented sophistication with regard to dynamic covalent chemistry.  相似文献   

14.
Nature has engineered delicate synergistic covalent and supramolecular polymers (CSPs) to achieve advanced life functions, such as the thin filaments that assist in muscle contraction. Constructing artificial synergistic CSP materials with bioinspired mechanically adaptive features, however, represents a challenging goal. Here, we report an artificial CSP system to illustrate the integration of a covalent polymer (CP) and a supramolecular polymer (SP) in a synergistic fashion, along with the emergence of notable mechanical and dynamic properties which are unattainable when the two polymers are formed individually. The synergistic effect relies on the peculiar network structures of the SP and CPs, which endow the resultant CSPs with overall improved mechanical performance in terms of the stiffness, strength, stretchability, toughness, and elastic recovery. Moreover, the dynamic properties of the SP, including self‐healing, stimuli‐responsiveness, and reprocessing, are also retained in the CSPs, thus leading to their application as programmable and tunable materials.  相似文献   

15.
A model system is introduced as a general tool to elaborate on orthogonal templation of dynamic covalent ring-opening polymerization (ODC-TROP). The tool consists of 310 helical peptides as unprecedented templates and semicarbazones as orthogonal dynamic covalent linkers. With difficult-to-control 1,2-dithiolanes, ODC-TROP on the level of short model oligomers occurs with high templation efficiency, increasing and diminishing upon helix stabilization and denaturation, respectively. Further, an anti-templated conjugate with mispositioned monomers gave reduced templation upon helix twisting. Even with the “unpolymerizable” 1,2-diselenolanes, initial studies already afford mild templation efficiency. These proof-of-principle results promise that the here introduced tool, recyclable and enabling late-stage side chain modification, will be useful to realize ODC-TROP of intractable or unknown cyclic dynamic covalent monomers for dynamer materials as well as cellular uptake and signaling applications.  相似文献   

16.
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central‐to‐axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.  相似文献   

17.
18.
19.
The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems. Furthermore, these dynamic covalent syntheses exploit the efficient templating effects that the R2NH2+ ions exert on the macrocyclization of the matched dialdehyde and diamine fragments, resulting not only in rapid rates of reaction, but also affording near-quantitative conversion of starting materials into the desired interlocked products. Once assembled, these "dynamic" interlocked compounds can be "fixed" upon reduction of the reversible imine bonds (by using BH3.THF) to give kinetically stable species, a procedure that can be performed in the same reaction vessel as the inital thermodynamically controlled assembly. Isolation and purification of the mechanically interlocked products formed by using this protocol is relatively facile, as no column chromatography is required. Herein, we present the synthesis and characterization of 1) a [2]rotaxane, 2) a [3]rotaxane, 3) a branched [4]rotaxane, 4) a bis [2]rotaxane, and 5) a novel cyclic [4]rotaxane, demonstrating, in incrementally more complex systems, the efficacy of this one-pot strategy for the construction of interlocked molecules.  相似文献   

20.
Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane-1,3,5-tricarboxamide (CTA) core provides face-to-face hydrogen bonding and a planar conformation, inducing the self-assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self-assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor-made molecular design of the tripodal gelator, light-responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号