首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of new rationale designed 2,1,3‐benzothiadiazole (BTD) fluorescent derivatives has been synthesized and applied for cellular selective staining of cancer cells in cell‐imaging experiments. Four new synthesized BTD derivatives showed only poor or reasonable cellular selection, but with excellent fluorescence intensity and almost no background signal emitting at the blue or green channels. The knowledge gained by analysing their molecular architecture, however, allowed the planning and synthesis of a fluorescent BTD, which was then successfully tested and showed superior mitochondrial selection with outstanding results in bioimaging experiments in living cells. The new marker (named Splendor) was then compared with the commercially available MitoTracker Red (also through co‐staining experiments) and showed far better mitochondrial selection, fluorescence intensity and chemical stability. Mitochondrial imaging and tracking (dynamic changes) was possible using Splendor during the whole cellular division cycle. DFT calculations were performed to offer insights into the origin of the chemical‐ and photostability of BTD derivatives. In addition, molecular docking calculations hint at a potential molecular target for the BTD derivatives in the mitochondrial protein adenine nucleotide translocase, which may explain the mitochondrial selectivity of Splendor versus the other four BTD derivatives.  相似文献   

3.
The breast cancer stem cell (CSC) and bulk breast cancer cell potency of a series of metallopeptides containing dichloro(1,10‐phenanthroline)copper(II) and various organelle‐targeting peptide sequences is reported. The mitochondria‐targeting metallopeptide 1 exploits the higher mitochondrial load in breast CSCs over the corresponding non‐CSCs and the vulnerability of breast CSCs to mitochondrial damage to potently and selectively kill breast CSCs. Strikingly, 1 reduces the formation and size of mammospheres to a greater extent than salinomycin, an established CSC‐potent agent. Mechanistic studies show that 1 enters CSC mitochondria, induces mitochondrial dysfunction, generates reactive oxygen species (ROS), activates JNK and p38 pathways, and prompts apoptosis. To the best of our knowledge, 1 is the first metallopeptide to selectivity kill breast CSCs in vitro.  相似文献   

4.
The pH low insertion peptide (pHLIP) offers the potential to deliver drugs selectively to the cytoplasm of cancer cells based on tumor acidosis. The WT pHLIP inserts into membranes with a pH50 of 6.1, while most solid tumors have extracellular pH (pHe) of 6.5–7.0. To close this gap, a SAR study was carried out to search for pHLIP variants with improved pH response. Replacing Asp25 with α‐aminoadipic acid (Aad) adjusts the pH50 to 6.74, matching average tumor acidity, and replacing Asp14 with γ‐carboxyglutamic acid (Gla) increases the sharpness of pH response (transition over 0.5 instead of 1 pH unit). These effects are additive: the Asp14Gla/Asp25Aad double variant shows a pH50 of 6.79, with sharper transition than Asp25Aad. Furthermore, the advantage of the double variant over WT pHLIP in terms of cargo delivery was demonstrated in turn‐on fluorescence assays and anti‐proliferation studies (using paclitaxel as cargo) in A549 lung cancer cells at pH 6.6.  相似文献   

5.
Mitochondrial polarity strongly influences the intracellular transportation of proteins and interactions between biomacromolecules. The first fluorescent probe capable of the ratiometric imaging of mitochondrial polarity is reported. The probe, termed BOB, has two absorption maxima (λabs=426 and 561 nm) and two emission maxima—a strong green emission (λem=467 nm) and a weak red emission (642 nm in methanol)—when excited at 405 nm. However, only the green emission is markedly sensitive to polarity changes, thus providing a ratiometric fluorescence response with a good linear relationship in both extensive and narrow ranges of solution polarity. BOB possesses high specificity to mitochondria (Rr=0.96) that is independent of the mitochondrial membrane potential. The mitochondrial polarity in cancer cells was found to be lower than that of normal cells by ratiometric fluorescence imaging with BOB. The difference in mitochondrial polarity might be used to distinguish cancer cells from normal cells.  相似文献   

6.
黄振龙  陈令成  肖义 《应用化学》2017,34(12):1370-1378
线粒体是一种具有双层膜结构的细胞器,参与细胞新陈代谢过程的能量循环以及离子平衡过程,在细胞生理过程中具有极其重要的意义。一些小分子荧光染料/探针结构中带有正电荷,因受到线粒体内膜负电势的牵引而标记在线粒体上,为研究线粒体的形态或功能提供了重要的可视化成像工具。然而,大多数线粒体染料/探针对线粒体的靶向标记稳定性仍不够理想,因为线粒体电势处于不断的动态变化中,当电势降低时,对染料的亲和力相应降低。尤其在病理条件下(比如细胞凋亡)细胞代谢受到阻滞时,线粒体膜电势显著降低,阳离子染料将扩散离开线粒体,造成非特异性荧光。最近,Kim团队和本人课题组提出可固定线粒体探针的新概念,用活性基团将荧光分子探针通过共价键固定在线粒体中,开发了稳定靶向线粒体中的定量探测微环境p H值、粘度、膜电势荧光探针。我们认为,对于追踪和探测具有高度动态变化特性的线粒体而言,开发可固定的线粒体荧光分子探针是必然趋势,因此本文进行评述和展望。  相似文献   

7.
8.
9.
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.  相似文献   

10.
Two-dimensional carbon nitride (CN) has drawn increasing attention as a conjugated metal-free polymer for photoelectrochemical (PEC) biosensing. However, CN only absorbs ultraviolet and very limited visible light (λ<460 nm), which poses potential risks for biomolecules and also cannot pass through tissue for in vivo detection. Herein, simultaneous exfoliation and functionalization of CN nanosheets (CNNS) with copper phthalocyanine (TsCuPc) simply by mechanical milling, thanks to the delicate π–π interaction between them, is reported. Moreover, due to energy-level matching, an effective donor–acceptor (D-A) interaction with much-improved photocurrent under irradiation with red light (λ>630 nm) was observed for the as-prepared CNNS-TsCuPc. As an example, dopamine in blood was detected by using red light by a CNNS-TsCuPc photoelectrode with uncompromised linear range and detection limit, as well high selectivity. As one of the few successful demonstrations of red-light-responsive PEC sensing systems, this work takes a first step toward future in vivo applications by enriching the optoelectronic properties of CN with task-specific antenna molecules via D-A interaction.  相似文献   

11.
Mitochondrial DNA (mtDNA) plays a crucial but incompletely understood role in cellular biochemistry and etiology of numerous disease states. Thus, there is an urgent need for targeted probes that can dynamically respond to changes to mtDNA such as copy number in live cells, but it is difficult to permeate the mitochondrial membrane of the living cell. Now, a ruthenium(II) light‐switching probe targeted by peptide vectorization selectively to mitochondrial nucleoids is presented. Evidence for DNA binding by the probe in live cells is derived from confocal fluorescence microscopy, resonance Raman, and luminescence lifetime imaging. While viable under imaging conditions, specific staining of mitochondrial DNA permitted efficient and selective photoinduced toxicity on a cell‐by‐cell basis under higher excitation intensities. This powerful combination of imaging and photocytotoxicity is an important step towards realizing phototheranostic application of such RuII probes.  相似文献   

12.
13.
Results are presented which clearly illustrate the possibilities and limitations of the use of indicators immobilized on optical fibres, in the determination of pH.  相似文献   

14.
The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.  相似文献   

15.
16.
Dichromate binds to surface‐active maghemite nanoparticles (SAMNs) to form a stable core–shell nanostructures (SAMN@CrVI). The hybrid was characterized by Mössbauer spectroscopy, high‐angle annular dark‐field imaging, electron energy‐loss spectroscopy, and electrochemical techniques, which revealed a strong interaction of dichromate with the nanoparticle surface. Electrochemical characterization showed lower charge‐transfer resistance, better electrochemical performance, and more reversible electrochemical behavior with respect to naked SAMNs. Moreover, SAMN@CrVI is an excellent electrocatalyst for hydrogen peroxide reduction. Furthermore, an enzyme, namely, bovine serum amine oxidase (BSAO: EC 1.4.3.6), was immobilized on SAMN@CrVI by self‐assembly to give a ternary hybrid nanostructured catalyst for polyamine oxidation (SAMN@CrVI‐BSAO). SAMN@CrVI‐BSAO was applied for the development of a reagentless, fast, inexpensive, and interference‐free polyamine biosensor, which was successfully exploited for the discrimination of tumorous tissue from healthy tissue in human crude liver extracts.  相似文献   

17.
18.
The proteins glutamate dehydrogenase (GDH) and mitoNEET are both targets of drug development efforts to treat metabolic disorders, cancer, and neurodegenerative diseases. However, these two proteins differ starkly in the current knowledge about ligand binding sites. MitoNEET is a [2Fe-2S]-containing protein with no obvious binding site for small ligands observed in its crystal structures. In contrast, GDH is known to have a variety of ligands at multiple allosteric sites thereby leading to complex regulation in activity. In fact, while GDH can utilize either NAD(H) or NADP(H) for catalysis at the active site, only NAD(H) binds at a regulatory site to inhibit GDH activity. Previously, we found that mitoNEET forms a covalent bond with GDH in vitro and increases the catalytic activity of the enzyme. In this study we evaluated the effects of mitoNEET binding on the allosteric control of GDH conferred by inhibitors. We examined all effectors using NAD or NADP as the coenzyme to determine allosteric linkage by the NAD-binding regulatory site. We found that GDH activity, in the presence of the inhibitory palmitoyl-CoA and EGCG, can be rescued by mitoNEET, regardless of the coenzyme used. This suggests that mitoNEET rescues GDH by stabilizing the open conformation.  相似文献   

19.
Polymer nanoparticles are prepared by self‐assembly of visible light and pH sensitive perylene‐functionalized copolymers which are synthesized by quaternization between 1‐(bromomethyl)perylene and the dimethylaminoethyl units of poly(dimethylaminoethyl methacrylate) (PDMAEMA). The perylene‐containing polymethacrylate segments afford the system visible light responsiveness and the unquaternized PDMAEMA segments afford the system pH responsiveness. The self‐assembled nanoparticles exhibit a unique dual stimuli response. They can be photocleaved under visible light irradiation, shrunken to smaller nanoparticles at high pH, and swollen at low pH. The structural change endows the nanoparticle with great potential as a sensitive nanocarrier for controlled release of Nile Red and lysozyme under this stimulation. The visible light responsiveness and synergistic effect on the release of loaded molecules with the dual stimulation may obviate the need for harsh conditions such as UV light or extreme pH stimulation, rendering the system more applicable under mild conditions.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号