首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single‐molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2(MeCN)2] ( 1 ), [Co(hfac)2(Spy)2] ( 2 ), [Co(hfac)2(MBIm)2] ( 3 ), and [Co(hfac)2(DMF)2] ( 4 ) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4‐styrylpyridine, MbIm=5,6‐dimethylbenzimidazole, DMF=N,N‐dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2 – 4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1 – 4 possess large positive D values and relative small E parameters, indicating easy‐plane magnetic anisotropy with significant rhombic anisotropy in 1 – 4 . Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field‐induced single‐ion magnets (SIMs) of 1 – 4 . These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.  相似文献   

2.
The reaction of 2‐aldehyde‐8‐hydroxyquinoline, histamine, and YbX3 · 6H2O (X = NO3, ClO4) affords two ytterbium complexes [Yb(nma)2] · ClO4 · 2CH2Cl2 ( 1 ) and [Yb(nma)(NO3)2(DMSO)] · CH3OH ( 2 ) (Hnma = N‐(2‐(8‐hydroxylquinolinyl)methane(2‐(4‐imidazolyl)ethanamine))). The crystal structures were determined by X‐ray diffraction and it has been revealed that the anions have played important role in the assembly. In the case of 1 , the Yb3+ ions are completely encapsulated by two nma ligands with uncoordinated perchlorate anion balancing the positive charge. In the case of 2 , the Yb3+ ions are ligated by the ligand, oxygen atoms of the nitrate ion, and DMSO. Both complexes exhibit essential NIR luminescence of Yb3+ ions.  相似文献   

3.
通过配体1,2-环己二胺缩邻香兰素(H2L)和不同的镱盐反应,合成了4个镱稀土配合物[Yb(H2L)2](ClO43·2CH3OH·H2O(1),[Yb4(L)4(NO32(H2O)2](PF62·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF62·2CH2Cl2·2H2O(3)和[Yb4(L)4(NO32(H2O)2][Yb(NO33(H2O)2(CH3OH)](NO32 ·4CH2Cl2·6CH3OH(4)。X射线单晶衍射分析表明配合物1为零维的单核结构,配合物2~4均为四核结构。研究了4个配合物的近红外发光性能。  相似文献   

4.
A new family of five-coordinate lanthanide single-molecule magnets (Ln SMMs) [Dy(Mes*O)2(THF)2X] (Mes*=2,4,6-tri-tert-butylphenyl; X=Cl, 1 ; Br, 2 ; I, 3 ) is reported with energy barriers to magnetic reversal >1200 K. The five-coordinate DyIII ions have distorted square pyramidal geometries, with halide anions on the apex, and two Mes*O ligands mutually trans- to each other, and the two THF molecules forming the second trans- pair. These geometrical features lead to a large magnetic anisotropy in these complexes along the trans-Mes*O direction. QTM and Raman relaxation times are enhanced by varying the apex halide from Cl to Br to I, or by dilution in a diamagnetic yttrium analogue.  相似文献   

5.
通过配体1,2-环己二胺缩邻香兰素(H2L)和不同的镱盐反应,合成了4个镱稀土配合物[Yb(H2L)2](ClO43·2CH3OH·H2O(1),[Yb4(L)4(NO32(H2O)2](PF62·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF62·2CH2Cl2·2H2O(3)和[Yb4(L)4(NO32(H2O)2][Yb(NO33(H2O)2(CH3OH)](NO32·4CH2Cl2·6CH3OH(4)。X射线单晶衍射分析表明配合物1为零维的单核结构,配合物2~4均为四核结构。研究了4个配合物的近红外发光性能。  相似文献   

6.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

7.
Two dysprosium isotopic isomers were synthesized: Et4N[163DyPc2] ( 1 ) with I =5/2 and Et4N[164DyPc2] ( 2 ) with I =0 (where Pc=phthalocyaninato). Both isotopologues are single‐molecule magnets (SMMs); however, their relaxation times as well as their magnetic hystereses differ considerably. Quantum tunneling of the magnetization (QTM) at the energy level crossings is found for both systems via ac‐susceptibility and μ‐SQUID measurements. μ‐SQUID studies of 1 (I =5/2) reveal several nuclear‐spin‐driven QTM events; hence determination of the hyperfine coupling and the nuclear quadrupole splitting is possible. Compound 2 (I =0) shows only strongly reduced QTM at zero magnetic field. 1 (I =5/2) could be used as a multilevel nuclear spin qubit, namely qudit (d =6), for quantum information processing (QIP) schemes and provides an example of novel coordination‐chemistry‐discriminating nuclear spin isotopes. Our results show that the nuclear spin of the lanthanide must be included in the design principles of molecular qubits and SMMs.  相似文献   

8.
Treatment of N,N′‐bis(aryl)formamidines (ArFormH), N,N′‐bis(2,6‐difluorophenyl)formamidine (DFFormH) or N,N′‐bis(2,6‐diisopropylphenyl)formamidine (DippFormH), with europium metal in CH3CN is an efficient synthesis of the divalent complexes: [{Eu(DFForm)2(CH3CN)2}2] ( Eu1 ) or [Eu(DippForm)2(CH3CN)4] ( Eu2 ). The synthetic method was extended to ytterbium, but the metal required activation by addition of Hg0. With DFFormH in CH3CN, [{Yb(DFForm)2(CH3CN)}2] ( Yb1 ) was obtained in good yield, and [Yb(DFForm)2(thf)3] ( Yb3 ) was obtained from a synthesis in CH3CN/THF. Thus, this synthetic method completely circumvents the use of either salt metathesis, or redox transmetallation/protolysis (RTP) protocols to prepare divalent rare‐earth formamidinates. Heating Yb1 in PhMe/C6D6 resulted in decomposition to trivalent products, including one from a CH3CN activation process. For a synthetic comparison, divalent ytterbium DFForm and DippForm complexes were synthesised by RTP reactions between Yb0, Hg(R)2 (R=Ph, C6F5), and ArFormH in THF, leading to the isolation of either [Yb(DFForm)2(thf)3] ( Yb3 ), or the first five coordinate rare‐earth formamidinate complex [Yb(DippForm)2(thf)] ( Yb4 b ), and, from adjustment of the stoichiometry, trivalent [Yb(DFForm)3(thf)] ( Yb6 ). Oxidation of Yb3 with benzophenone (bp), or halogenating agents (TiCl4(thf)2, Ph3CCl, C2Cl6) gave [Yb(DFForm)3(bp)] or [Yb(DFForm)2Cl(thf)2], respectively. Furthermore, the structural chemistry of divalent ArForm complexes has been substantially broadened. Not only have the highest and lowest coordination numbers for divalent rare‐earth ArForm complexes been achieved in Eu2 and Yb4 b , respectively, but also dimeric Eu1 and Yb1 have highly unusual ArForm bridging coordination modes, either perpendicular μ‐1κ(N:N′):2κ(N:N′) in Eu1 , or the twisted μ‐1κ(N:N′):2κ(N′:F′) DFForm coordination in Yb1 , both unprecedented in divalent rare‐earth ArForm chemistry and in the wider divalent rare‐earth amidinate field.  相似文献   

9.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

10.
Novel Synthesis of a Lanthanide Trialkyl – Characterization and Crystal Structure of Yb(CH2 t Bu)3(thf)2 The solvated ytterbium alkyl Yb(CH2tBu)3(thf)2 ( 1 ) was obtained in moderate yield from the reaction of ytterbium metal with neopentyl iodide. Ruby‐red air‐sensitive crystals of 1 were characterized by melting point, elemental analysis, IR, NMR, and UV/Vis spectroscopy and by X‐ray crystallography. In the solid state the ytterbium atom shows a trigonal bipyramidal coordination with the neopentyl groups and the THF ligands occupying equatorial and axial positions, respectively.  相似文献   

11.
Three-dimensional bimetallic cyanido-bridged frameworks, [LnIII(2,2′-bipyridine N,N′-dioxide)2(H2O)][CuI2(CN)5]⋅5 H2O (Ln=Dy, 1 ; Yb, 2 ), are reported. They exhibit the effect of slow relaxation of magnetization, leading to a magnetic hysteresis loop, and sensitized visible-to-near-infrared photoluminescence. Both physical properties are related to the eight-coordinated lanthanide(III) complexes embedded in the unprecedented coordination skeleton composed of symmetry-breaking polycyanidocuprate linkers. The three-dimensional d–f cyanido-bridged network was shown to serve as an efficient coordination scaffold to achieve emissive lanthanide single-molecule magnets.  相似文献   

12.
Summary Reaction of Cu(OAc)2, 4-(1H)-pyridone (LH) and Dy or Gd nitrate in MeOH resulted in the formation of the heterometallic complexes [Cu2LnL2(LH)2(NO3)(OH)4· xH2O], Ln = Dy (1) or Gd (2). Reaction of Cu(OH)2 with 4-(1H)-pyridone and Dy(NO3)3 in DMF resulted in the formation of the heterometallic compound [Cu2DyL2(LH)2(NO3)2(OH)3·DMF] (3). The Cu complexes [Cu(OAc)L]2 and [CuL2·DMF] x have also been prepared from the reaction of 4-(1H)-pyridone with Cu2+ in MeOH and DMF, respectively. All the complexes were characterized by elemental analyses, and i.r. and X-band e.s.r. spectroscopies.  相似文献   

13.
Four isostructural [Ni2Ln2(CH3CO2)3(HL)4(H2O)2]3+(Ln3+=Dy ( 1 ), Tb ( 2 ), Ho ( 3 ) or Lu ( 4 )) complexes and a dinuclear [NiGd(HL)2(NO3)3] ( 5 ) complex are reported (where HL=2‐methoxy‐6‐[(E)‐2′‐hydroxymethyl‐phenyliminomethyl]‐phenolate). For compounds 1 – 3 and 5 , the Ni2+ ions are ferromagnetically coupled to the respective lanthanide ions. The ferromagnetic coupling in 1 suppresses the quantum tunnelling of magnetisation (QTM), resulting in a rare zero dc field Ni–Dy single‐molecule magnet, with an anisotropy barrier Ueff of 19 K.  相似文献   

14.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

15.
Following a novel synthetic strategy where the strong uniaxial ligand field generated by the Ph3SiO? (Ph3SiO?=anion of triphenylsilanol) and the 2,4‐di‐tBu‐PhO? (2,4‐di‐tBu‐PhO?=anion of 2,4‐di‐tertbutylphenol) ligands combined with the weak equatorial field of the ligand LN6 , leads to [DyIII(LN6)(2,4‐di‐tBu‐PhO)2](PF6) ( 1 ), [DyIII(LN6)(Ph3SiO)2](PF6) ( 2 ) and [DyIII(LN6)(Ph3SiO)2](BPh4) ( 3 ) hexagonal bipyramidal dysprosium(III) single‐molecule magnets (SMMs) with high anisotropy barriers of Ueff=973 K for 1 , Ueff=1080 K for 2 and Ueff=1124 K for 3 under zero applied dc field. Ab initio calculations predict that the dominant magnetization reversal barrier of these complexes expands up to the 3rd Kramers doublet, thus revealing for the first time the exceptional uniaxial magnetic anisotropy that even the six equatorial donor atoms fail to negate, opening up the possibility to other higher‐order symmetry SMMs.  相似文献   

16.
[Yb3OBr4{N(SiMe3)2}3(THF)3], an Amido Complex of Ytterbium with a Clusterlike Structure The title compound has been prepared from YbBr3 and NaN(SiMe3)2 in THF suspension, forming yellow single crystals from hexane solutions which were characterized by a crystal structure determination. Space group P1 , Z = 2, lattice dimensions at ?100°C: a = 1085.4(1), b = 1410.2(1), c = 1912.0(1) pm; α = 78.62(1)°, β = 80.61(1)°, γ = 73.45(1)°, R = 0.025. In the molecular structure of [Yb3OBr4{N(SiMe3)2}3(THF)3] the three ytterbium atoms together with the μ3-oxygen atom and a μ3-bromine atom form a distorted trigonal bipyramid. In addition, three μ2-Br atoms coordinate the Yb atoms in the equatorial plane, whereas the THF molecules and the N(SiMe3)2? ligands are terminally coordinated, thus forming a distorted octahedrally surrounding of the Yb atoms.  相似文献   

17.
The Reaction of Ytterbium with N‐iodo‐triphenylphosphaneimine. Crystal Structures of [Yb2I(THF)2(NPPh3)4] · 2 THF, [YbI2(HNPPh3)(DME)2], and [{YbI2(DME)2}2(μ‐DME)] When treated with ultrasound, the reaction of ytterbium powder with INPPh3 in tetrahydrofuran leads to [YbI2(THF)4] and to the mixed‐valence phosphoraneiminato complex [Yb2I(THF)2(NPPh3)4] · 2 THF ( 1 ), which forms red single‐crystals. In the analogous reaction in 1,2‐dimethoxyethane (DME) only the ytterbium(II) iodide solvates [YbI2(HNPPh3)(DME)2] ( 2 ) and [{YbI2(DME)2}2 · (μ‐DME)] ( 3 ) can be isolated, which form yellow single crystals. All compounds were characterized by crystal structure analyses. 1 : Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1337.6(5), b = 1389.6(5), c = 2244.2(17) pm; α = 86.11(7)°, β = 88.06(7)°, γ = 88.63(4)°; R = 0.0759. In 1 the two ytterbium atoms are connected via the N atoms of two phosphoraneiminato groups (NPPh3) to form a planar Yb2N2 four‐membered ring. The structure can also be described as an ion pair consisting of [YbI(THF)2]+ and [Yb(NPPh3)4]. 2 : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 811.9(1), b = 1114.0(1), c = 1741.3(1) pm; β = 95.458(5)°; R = 0.0246. 2 forms molecules in which the ytterbium atom is coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions. The O atoms of the two DME‐chelates and the N atom of the phosphaneimine ligand HNPPh3 are in the equatorial positions. 3 : Space group P1, Z = 2, lattice dimensions at –70 °C: a = 817.5(1), b = 1047.7(1), c = 1115.5(2) pm; α = 90.179(10)°, β = 97.543(15)°, γ = 91.087(12)°; R = 0.0317. 3 has a dimeric molecular structure, in which the two fragments {YbI2(DME)2} are connected centrosymmetrically via a μ‐DME bridge. As in 2 , the ytterbium atoms are coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions, as well as with the two DME chelates and with one O atom each of the μ‐DME ligand in the equatorial positions.  相似文献   

18.
[Yb(OAr)2(μ‐OMe)(DME)]2 ( 1 ) (OAr = 2,6‐di‐iso‐propylphenolate) was synthesised via a redox transmetallation ligand exchange reaction between ytterbium metal, diphenylmercury and 2,6‐di‐isopropylphenol in DME. The source of the methoxy groups is from cleavage of DME, and the C‐O bond activation is unexpected given that the reaction was undertaken at ambient temperature. Each Yb3+ metal ion in 1 is six coordinate, and the coordination arrangement around each metal ion is distorted trigonal antiprismatic with Yb‐O(OMe) bond lengths (2.191(2) and 2.258(2) Å) shorter than the Yb‐O(aryloxide) bond distances (2.094(2) and 2.074(2) Å).  相似文献   

19.
A series of mer‐[Ln(NO3)3(Ph3PO)3] complexes were prepared from Ln(NO3)3 · xH2O and Ph3PO in chloroform (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, and Er). The La and Nd complexes were 0.25 CHCl3 solvates, whereas the others were solvent‐free. The identical reaction using Yb(NO3)3 · xH2O produced the unique salt trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] · Et2O. All nitrate ions in all complexes are η2‐chelating. A comparison of the various [Ln(NO3)3(Ph3PO)3] structures, including those in the literature, reveals at least four common polymorphs, each of which is represented by isomorphic structures of multiple Ln ions. Luminescence of mer‐[Ln(NO3)3(Ph3PO)3] (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, and Dy), trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] and Ph3PO assignments are reported. Latva's empirical rule allows for the antenna effect, in which energy is transferred from the triplet state of the Ph3PO ligand, to occur only for Tb3+. Excitation via Ph3PO results in strong green luminescence for Tb3+ having twice the intensity as that which results from direct excitation of the f‐f transitions.  相似文献   

20.
Molecular and Crystal Structure of Ytterbium(III)-triaqua-trinitrate, Yb(H2O)3(NO3)3 Yb(H2O)3(NO3)3 crystallizes from a concentrated solution of Yb2O3 in nitric acid in a vacuum desiccator at ambient temperature as colourless single crystals. The crystal structure was determined from single crystal four-circle diffractometer data (R3 , Z = 6, a = 1175.5(1), c = 1117.7(2) pm, Vm = 134.25 cm3/mol, R = 3.0%, Rw = 2.9%). The structure may be viewed at as a heavily compressed packing of [Yb(H2O)3(NO3)3] molecules. Yb3+ is coordinated by three bidentate nitrate ligands and three water molecules so that a tricapped trigonal prism (C.N. 9) of oxygen atoms results as the coordination polyhedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号