首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Owing to their unique, nanoscale related optical properties, nanostructures assembled from molecular photosensitizers (PSs) have interesting applications in phototheranostics. However, most nanostructured PS assemblies are super‐quenched, thus, preventing their use in photodynamic therapy (PDT). Although some of these materials undergo stimuli‐responsive disassembly, which leads to partial recovery of PDT activity, their therapeutic potentials are unsatisfactory owing to a limited ability to promote generation reactive oxygen species (ROS), especially via type I photoreactions (i.e., not by 1O2 generation). Herein we demonstrate that a new, nanostructured phthalocyanine assembly, NanoPcA, has the ability to promote highly efficient ROS generation via the type I mechanism. The results of antibacterial studies demonstrate that NanoPcA has potential PDT applications.  相似文献   

2.
We have evaluated the efficacy of the new photosensitizer (PS) Tookad in photodynamic therapy (PDT) in vivo. This PS is a palladium-bacteriopheophorbide presenting absorption peaks at 762 and 538 nm. The light dose, drug dose and drug injection-light irradiation interval (DLI), ranging between 100 and 300 J/cm2, 1 and 5 mg/kg and from 10 to 240 min, respectively, were varied, and the response to PDT was analyzed by staging the macroscopic response and by the histological examination of the sections of the irradiated cheek pouch. The level of PDT response, macroscopically and histologically, shows a strong dependence on the DLI, light dose and drug dose at the applied conditions in the normal hamster cheek pouch. A decay of the tissular response with increasing DLI is observed corresponding to a time of half-maximum response ranging from 10 to 120 min, depending on drug dose and light dose. The tissues affected at the lowest doses are predominantly the vascularized diffuse connective tissue situated between the inner and outer striated muscle (SM) layers as well as these muscle layers themselves. The highest response at the shortest DLI and the absence of a measurable response at DLI longer than 240 min at 300 J/cm2 and drug dose of 5 mg/kg are characteristics of a predominantly vascular effect of this PS. This observation suggests that Tookad could be effective in PDT of vascularized lesions or pathologies associated with the proliferation of neovessels.  相似文献   

3.
Stimuli-responsive smart photosensitizer (PS) nanoassemblies that allow enhanced delivery and controlled release of PSs are promising for imaging-guided photodynamic therapy (PDT) of tumors. However, the lack of high-sensitivity and spatial-resolution signals and fast washout of released PSs from tumor tissues have impeded PDT efficacy in vivo. Herein, we report tumor targeting, redox-responsive magnetic and fluorogenic PS nanoassemblies ( NP-RGD ) synthesized via self-assembly of a cRGD- and disulfide-containing fluorogenic and paramagnetic small molecule ( 1-RGD ) for fluorescence/magnetic resonance bimodal imaging-guided tumor PDT. NP-RGD show high r1 relaxivity but quenched fluorescence and PDT activity; disulfide reduction by glutathione (GSH) promotes efficient disassembly into a small-molecule probe ( 2-RGD ) and an organic PS (PPa-SH), which could further bind with intracellular albumin, allowing prolonged retention and cascade activation of fluorescence and PDT to ablate tumors.  相似文献   

4.
Photodynamic therapy (PDT) leads to cancer remission via the production of cytotoxic species under photosensitizer (PS) irradiation. However, concomitant damage and dark toxicity can both hinder its use. With this in mind, we have implemented a versatile peptide-based platform of bioorthogonally activatable BODIPY-tetrazine PSs. Confocal microscopy and phototoxicity studies demonstrated that the incorporation of the PS, as a bifunctional module, into a peptide enabled spatial and conditional control of singlet oxygen (1O2) generation. Comparing subcellular distribution, PS confined in the cytoplasmic membrane achieved the highest toxicities (IC50=0.096±0.003 μm ) after activation and without apparent dark toxicity. Our tunable approach will inspire novel probes towards smart PDT.  相似文献   

5.
Prerequisites for the use of photodynamic therapy (PDT) to treatment of atherosclerosis, as well as the development and structure of atherosclerotic vascular lesions in humans are analyzed. The basic requirements for PDT components, specifically photosensitizers (PS), and the radiation source, and the current state of their development are overviewed. Some original results of in vitro studies of the effect of PS on the basis of phthalocyanines and radiation on cells from the atherosclerotic plaques are presented.  相似文献   

6.
A major objective in developing new treatment approaches for lethal tumors is to reduce toxicity to normal tissues while maintaining therapeutic efficacy. Photodynamic therapy (PDT) provides a mechanistically distinct approach to treat tumors without the systemic toxicity of chemotherapy drugs. PDT involves the light‐based activation of a small molecule, a photosensitizer (PS), to generate reactive molecular species (RMS) that are toxic to target tissue. Depending on the PS localization, various cellular and subcellular components can be targeted, causing selective photodamage. It has been shown that targeted lysosomal photodamage followed by, or simultaneous with, mitochondrial photodamage using two different PS results in a considerable enhancement in PDT efficacy. Here, two liposomal formulations of benzoporphyrin derivative (BPD): (1) Visudyne (clinically approved) and (2) an in‐house formulation entrapping a lipid conjugate of BPD are used in combination with direct PS localization to mitochondria, endoplasmic reticulum and lysosomes, enabling simultaneous photodamage to all three organelles using a single wavelength of light. Building on findings by our group, and others, this study demonstrates, for the first time in a 3D model for ovarian cancer, that BPD‐mediated photodestruction of lysosomes and mitochondria/ER significantly enhances PDT efficacy at lower light doses than treatment with either PS formulation alone.  相似文献   

7.
The phototoxicity of photosensitizers (PSs) pre and post photodynamic therapy (PDT), and the hypoxic tumor microenvironment are two major problems limiting the application of PDT. While activatable PSs can successfully address the PS phototoxicity pre PDT, and type I PS can generate reactive oxygen species (ROS) effectively in hypoxic environment, very limited approaches are available for addressing the phototoxicity post PDT. There is virtually no solution available to address all these issues using a single design. Herein, we propose a proof-of-concept on-demand switchable photosensitizer with quenched photosensitization pre and post PDT, which could be activated only in tumor hypoxic environment. Particularly, a hypoxia-normoxia cycling responsive type I PS TPFN-AzoCF3 was designed to demonstrate the concept, which was further formulated into TPFN-AzoCF3 nanoparticles (NPs) using DSPE-PEG-2000 as the encapsulation matrix. The NPs could be activated only in hypoxic tumors to generate type I ROS during PDT treatment, but remain non-toxic in normal tissues, pre or after PDT, thus minimizing side effects and improving the therapeutic effect. With promising results in in vitro and in vivo tumor treatment, this presented strategy will pave the way for the design of more on-demand switchable photosensitizers with minimized side effects in the future.  相似文献   

8.
Local hypoxia in tumors is an undesirable consequence of photodynamic therapy (PDT), which will lead to greatly reduced effectiveness of this therapy. Bioreductive pro‐drugs that can be activated at low‐oxygen conditions will be highly cytotoxic under hypoxia in tumors. Based on this principle, double silica‐shelled upconversion nanoparticles (UCNPs) nanostructure capable of co‐delivering photosensitizer (PS) molecules and a bioreductive pro‐drug (tirapazamine, TPZ) were designed (TPZ‐UC/PS), with which a synergetic tumor therapeutic effect has been achieved first by UC‐based (UC‐) PDT under normal oxygen environment, immediately followed by the induced cytotoxicity of activated TPZ when oxygen is depleted by UC‐PDT. Treatment with TPZ‐UC/PS plus NIR laser resulted in a remarkably suppressed tumor growth as compared to UC‐PDT alone, implying that the delivered TPZ has a profound effect on treatment outcomes for the much‐enhanced cytotoxicity of TPZ under PDT‐induced hypoxia.  相似文献   

9.
Photodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment. Feasible approaches to surpass this drawback are based on lipid formulations. Besides that, and inspired in the efficacy of potassium iodide (KI) for antimicrobial photodynamic therapy (aPDT), the combined effect of singlet oxygen (1O2) with KI was assessed in this work, as an alternative strategy to potentiate the effect of PDT against resistant melanoma cells.  相似文献   

10.
Thermally reversible nanostructured thermosetting materials are prepared for the first time by modification of an epoxy resin with 5 wt.‐% of an amphiphilic polystyrene‐block‐poly(ethylene oxide) block copolymer (PSEO) and 30 wt.‐% of a low‐molecular‐weight liquid crystal, 4‐(hexyl)‐4‐biphenylcarbonitrile (HBC). The epoxy system modified with 5 wt.‐% PSEO amphiphilic copolymer self‐assembles into spherical microdomains with a size distribution between 32 and 45 nm in diameter. Under the same conditions, the modification of an epoxy system with 5 wt.‐% PSEO and 30 wt.‐% HBC leads to a micro‐phase separated PS‐rich domains embedded in a HBC phase. The morphology of this nanostructured thermosetting system consists in a higher amount of spherical microdomains of PSEO/HBC with the size distribution between 40 and 75 nm in diameter. This implies that the separation of the PS‐rich phase provokes the separation of the liquid crystal and allows one to obtain a novel thermally switchable smart material.

  相似文献   


11.
Gold nanorod (GNR)–photosensitizer (PS) complex was prepared using anionic PS (sodium salt of purpurin‐18) and cationic poly(allylamine hydrochloride) by layer‐by‐layer method, and was characterized by transmission electron microscopy, UV‐vis spectroscopy, and zeta potential. The GNR–PS complex is a promising agent for synergistic (photothermal and photodynamic) therapy (PTT/PDT), in which PTT generates heat as well as operates the PS release which maximize the following PDT activity. The combined dual therapy, PTT followed by PDT, exhibits a significantly higher photocytotoxicity result based on synergistic effect of hyperthermia from PTT as well as singlet oxygen photogeneration from PDT.  相似文献   

12.
Hypericin (HY) is a promising photosensitizer (PS) for use in photodynamic therapy (PDT). Port‐wine stains (PWSs) are congenital superficial dermal capillary malformations. In this study, we evaluated the photocytotoxic effects of HY for PDT in human vascular endothelial cells and a chicken cockscomb model. HY significantly inhibited the growth of human umbilical vein endothelial cells (HUVECs), as determined by colorimetric assays and morphological observation, and flow cytometry assays indicated induction of apoptosis and collapse of the mitochondrial membrane potential. In addition, HY more effectively inhibited growth of and induced apoptosis in HUVECs compared with hematoporphyrin (HP). Further experiments performed in a Roman chicken cockscomb model also showed a clear photocytotoxic effect on the cockscomb dermal capillary upon intravenous injection of HY. This effect may be due to the role of HY in the induction of apoptosis. Transmission electron microscopical analysis showed mitochondrial morphological changes such as incomplete ridges and swelling, and immunohistochemical assays showed an increase in the release of cytochrome c. In conclusion, HY exhibited a greater photocytotoxic activity than did HP toward the growth of endothelial cells and may thus represent a potent PS for PWS PDT.  相似文献   

13.
Strategies for enhanced photodynamic therapy effects   总被引:4,自引:0,他引:4  
Photodynamic therapy (PDT) is a treatment modality for the selective destruction of cancerous and nonneoplastic pathologies that involves the simultaneous presence of light, oxygen and a light-activatable chemical called a photosensitizer (PS) to achieve a cytotoxic effect. The photophysics and mechanisms of cell killing by PDT have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and disease stages, it will be important to develop strategies for enhancing PDT outcomes. This article focuses on two broad approaches for PDT enhancement: (1) mechanism-based combination treatments in which PDT and a second modality can be designed to either increase the susceptibility of tumor cells to PDT or nullify the treatment outcome-mitigating molecular responses triggered by PDT of tumors, and (2) the more recent approaches of PS targeting, either by specific cellular function-sensitive linkages or via conjugation to macromolecules.  相似文献   

14.
In recent years, cancer has been one of the leading causes of death in the world. Much effort has been devoted to developing cancer treatments. Photodynamic therapy (PDT) is a noninvasive therapeutic modality by combining the light of a specific wavelength, a photosensitizer (PS) and oxygen, which has been widely applied for the treatment of cancers. However, the application of PDT in clinic is greatly limited due to lack of tumor selectivity and often causing skin photosensitivity. The use of organic nanoparticles (NPs) as an advanced technology in the field of PDT shows a great promise to overcome these shortcomings. Therefore, in this review, we summarize several functional organic NPs as PS carriers that have been developed to enhance the efficacy of PDT against cancers.  相似文献   

15.
In the present work, an arrangement of polystyrene (PS) spheres was employed as a pattern for the electrodeposition of nanostructured Prussian blue (PB). The pattern of PS spheres was formed on Indium tin oxide (ITO) glass substrate. The ITO substrate modified by the PS spheres was used as a working electrode for the electrosynthesis of PB. A macroporous PB film constituted by nanoparticles of the compound was obtained after the dissolution of the spheres and was characterized by voltammetric and atomic force microscopy techniques. The electrocatalytic properties of this material were tested in the electrooxidation of hydrazine.  相似文献   

16.
A novel extended amphiphilic dendrimer with linear poly(ethylene oxide) (PEO) attached to a PEO-like dendritic core as hydrophilic fraction and eight docosyl chain branches as hydrophobic fraction has been prepared for the use as structure-directing agent for silica-type materials. The extended dendrimer exhibits a hexagonal columnar liquid crystalline phase in the melt. Organically modified inorganic precursors and the extended dendrimer co-assemble into nanostructured hybrids. Hybrids with 0.44 weight fraction (fw) of aluminosilicate show a lamellar morphology, while hybrids with 0.21 fw exhibit a cylindrical structure. Nanostructures were characterized by a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results suggest that dendrimer-based amphiphiles may provide an exciting platform for the formation of multifunctional organic-inorganic nanostructured hybrid materials with unique structural characteristics.  相似文献   

17.
Photodynamic therapy (PDT) is a promising modality for the treatment of solid tumors that combines a photosensitizing agent and light to produce cytotoxic reactive oxygen species that lead to tumor cell death. The recent introduction of bioluminescence imaging (BLI), involving the use of the luciferase gene (luc) transferred into target tumor cells, followed by systemic administration of luciferin and detection of the emitted visible chemiluminescence photons, offers the potential for longitudinal imaging of tumor growth and therapeutic response in single animals. We demonstrate in this study the first results of the use of BLI to assess the response of an intracranial brain tumor model (9L rat gliosarcoma) to aminolevulinic acid (ALA)-mediated PDT. Complementary in vitro experiments with the luciferase-transfected 9L cells show that the decrease in the luminescent signal after PDT correlates with cell kill. In vivo imaging shows a decrease in the BLI signal from the tumor after ALA-PDT treatment, followed by tumor regrowth. Furthermore, preliminary studies using cells transfected with a hypoxia-responsive vector show an increase in bioluminescence within 4 h after Photofrin-mediated PDT, demonstrating the ability to observe stress-gene responses. These results suggest that BLI can be used to provide spatiotemporal information of intracranial brain tumor responses after PDT and may serve as a valuable response-endpoint measure.  相似文献   

18.
Photochemical internalization (PCI) is under development for clinical use in treatment of soft tissue sarcomas and other solid tumors. PCI may release endocytosed bleomycin (BLM) into the cytosol by photochemical rupture of the endocytic vesicles. In this study, the human fibrosarcoma xenograft HT1080 was transplanted into the leg muscle of athymic mice. The photosensitizer disulfonated aluminum phthalocyanine (AlPcS2a) and BLM were systemically administrated 48 h and 30 min, respectively, prior to light exposure at 670 nm (30 J cm−2). The purposes of this study were to evaluate the treatment response to AlPcS2a-photodynamic therapy (PDT) and AlPcS2a-PDT in combination with BLM ( i.e. PCI of BLM) in an orthotopic, invasive and clinically relevant tumor model and to explore the underlying response mechanisms caused by PDT and PCI of BLM. The treatment response was evaluated by measuring tumor growth, contrast-enhanced magnetic resonance imaging (CE-MRI), histology and fluorescence microscopy. The results show that PCI of BLM is superior to PDT in inducing tumor growth retardation and acts synergistically as compared to the individual treatment modalities. The CE-MRI analyses 2 h after AlPcS2a-PDT and PCI of BLM identified a treatment-induced nonperfused central zone of the tumor and a well-perfused peripheral zone. While there were no differences in the vascular response between PDT and PCI, the histological analyses showed that PDT caused necrosis in the tumor center and viable tumor cells were found in the tumor periphery. PCI caused larger necrotic areas and the regrowth in the peripheral zone was almost completely inhibited after PCI. The results indicate that PDT is less efficient in the tumor periphery than in the tumor center and that the treatment effect of PCI is superior to PDT in the tumor periphery.  相似文献   

19.
Photodynamic therapy (PDT) is a clinical treatment in which a light‐absorbing drug called a photosensitizer (PS) is combined with light and molecular oxygen to generate cytotoxic singlet oxygen. PDT provides additional tissue selectivity compared to conventional chemotherapy as singlet oxygen is generated only in areas in which PS accumulates and that are simultaneously illuminated by a light source with sufficient irradiance and dose. Early PDT beacons built on this concept by adding an analyte‐responsive element that simultaneously turns on PDT and fluorescence, providing both an additional layer of selectivity and real‐time feedback of the PS′s activation state. More recent PDT beacons have expanded this idea, with new methods now available for sensing analytes, generating singlet oxygen, and reporting treatment status. In this Minireview, we consider developments in advanced activation strategies implemented in therapeutic and theranostic beacons.  相似文献   

20.

A functionalized compound, 4‐(2‐bromoisobutyryl)‐2,2,6,6‐tetra‐methylpiperidine‐1‐oxyl (Br‐TEMPO), was synthesized and used to synthesize block copolymers through tandem nitroxide‐mediated radical polymerization (NMRP) and atom transfer radical polymerization (ATRP). First, Br‐TEMPO was used to mediate the polymerization of styrene. The kinetics of polymerization proved a typical “living” nature of the reaction and the effectiveness in the mediation of polymerization of Br‐TEMPO. Then the PS‐Br macroinitiator was used to initiate atom transfer radical polymerization (ATRP). A series of acrylates were initiated by PS‐Br macroinitiators in typical ATRP processes at various conditions. The controlled polymerization of ATRP was also confirmed by molecular weight and kinetic analysis. Several cleavable block copolymers of PS‐b‐P(t‐BA), PS‐b‐P(n‐BA), and PS‐b‐PMA, with different molecular weights, were synthesized via this strategy. Relatively low polydispersities (<1.5) were observed and the molecular weights were in agreement with the theoretical ones. Hydrolysis of PS‐b‐P(t‐BA) was carried out, giving amphiphilic block copolymer PS‐b‐PAA without the cleavage of C‐ON bond or ester bond. All the block copolymers have two Tgs as demonstrated by DSC. A typical cleavable block copolymer of PS‐b‐PMA was cleaved by adding phenylhydrazine at 120°C to produce homopolymers in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号