首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology.  相似文献   

2.
Reaction involving no hypothetical structures having averaged group energies or particular bond energy assignments are described, that provide an alternative basis for evaluating strain energies of cyclic hydrocarbons. These reactions match CC bonds in the sense of having equal number of sp3-sp3, sp3-sp2, sp2-sp2, etc. bonds in reactants and products, while simultaneously matching various CH bonds as closely as possible. Such reactions single out those structural features that lead to destabilizations of strained ring systems. Theoretical and experimental molecular indices are introduced as a measure of these destabilizing effects, and are compared ring strain energies.  相似文献   

3.
The displacement of molecular structures from their thermodynamically most stable state by imposition of various types of electronic and conformational constraints generates highly strained entities that tend to release the accumulated strain energy by undergoing either structural changes or chemical reactions. The latter case amounts to strain‐induced reactivity (SIR) that may enforce specific chemical transformations. A particular case concerns dynamic covalent chemistry which may present SIR, whereby reversible reactions are activated by coupling to a high‐energy state. We herewith describe such a dynamic covalent chemical (DCC) system involving the reversible imine formation reaction. It is based on the formation of strained macrocyclic bis‐imine metal complexes in which the macrocyclic ligand is in a high energy form enforced by the coordination of the metal cation. Subsequent demetallation generates a highly strained free macrocycle that releases its accumulated strain energy by hydrolysis and reassembly into a resting state. Specifically, the metal‐templated condensation of a dialdehyde with a linear diamine leads to a bis‐imine [1+1]‐macrocyclic complex in which the macrocyclic ligand is in a coordination‐enforced strained conformation. Removal of the metal cation by a competing ligand yields a highly reactive [1+1]‐macrocycle, which then undergoes hydrolysis to transient non‐cyclic aminoaldehyde species, which then recondense to a strain‐free [2+2]‐macrocyclic resting state. The process can be monitored by 1H NMR spectroscopy. Energy differences between different conformational states have been evaluated by Hartree–Fock (HF) computations. One may note that the stabilisation of high‐energy molecular forms by metal ion coordination followed by removal of the latter, offers a general procedure for producing out‐of‐equilibrium molecular states, the fate of which may then be examined, in particular when coupled to dynamic covalent chemical processes.  相似文献   

4.
The formal [2+2] cycloaddition–retroelectrocyclization (CA–RE) reactions between tetracyanoethylene (TCNE) and strained, electron‐rich dibenzo‐fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta‐1,3‐diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta‐1,3‐diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta‐1,3‐diene products showed that the eight‐membered ring inverts via a boat conformer in a ring‐flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol?1.  相似文献   

5.
Here we describe the metathesis reactions of a strained eight-membered ring that contains both alkene and alkyne functionality. We find that the alkyne metathesis catalyst produces polymer through a ring-opening alkyne metathesis reaction that is driven by the strain release from the monomer. The strained monomer provides unusual reactivity with ruthenium-based alkene metathesis catalysts. We isolate a discrete trimeric species a Dewar benzene derivative that is locked in this form through an unsaturated cyclophane strap.  相似文献   

6.
trans‐Oxasilacycloheptenes are highly reactive strained alkenes. Competition reactions showed that these seven‐membered ring trans‐alkenes underwent [4+2] cycloaddition reactions faster than a trans‐cyclooctene. They also reacted with quinones and dimethyl acetylenedicarboxylate to form adducts with high diastereoselectivity. Kinetic studies showed that ring strain increases nucleophilicity by approximately 109.  相似文献   

7.
Introduction of a double bond into cyclic silanes lowers the ring strain by the cyclic delocalization of π-electrons through the hyperconjugation with the σ bonds, which is favored by the high π-orbital energy of the SiSi bond and the low σ*-orbital energy of the Si-H bonds. The π-relaxation of strains significantly occurs in the small rings. Unsaturated small silicon ring molecules are less strained than the saturated ones and the unsaturated carbon congeners. We calculated a series of polycyclic silicon molecules to confirm the π-relaxation and suggested that some unknown molecules could be prepared due to the low strain.  相似文献   

8.
The ring-cleavage reactions of a series of benzocycloalkenes were studied using an ArF excimer laser. Product formation was significantly suppressed in the presence of nitrogen; therefore, the presence of vibrationally excited states (hot molecules), as intermediates, was indicated. The product of highly strained benzocyclobutene was linearly proportional to the laser fluence, whereas those of benzocyclopentene and benzocyclohexene were proportional to the square of the laser fluence in the presence of nitrogen. These phenomena cannot be understood as photochemical bond cleavage in the electronic excited state, but instead appear to be the result of single- and two-photon reactions of hot molecules. The dissociation rate constants were evaluated by a statistical rate theory under the assumption that the reaction occurred from the hot molecule. The reaction rate of highly strained benzocyclobutene was predicted to be faster than the collisional rate with foreign gas, even if it had vibrational energy equivalent to one photon; however, the reaction rates of less strained benzocyclohexene were expected to compete with the collisional rate when the vibrational energy was equivalent to two photons. Benzocyclopentene was an intermediate case and showed both single- and two-photon reactions. The dissociation rate constant of 1.4 x 10(6) s(-1) was successfully obtained from benzocyclopentene under collision-free conditions. This value was in fair agreement with the calculated value. The different dissociation rate constants of the molecules were well-explained in terms of the strain energy. Although the strain energy varies in a wide range (10-130 kJ mol(-1)), the simple model of the calculations reproduced the observed values of the CH2-CH2 bond dissociation in strained benzocycloalkenes.  相似文献   

9.
Kunihiro Takeuchi 《Tetrahedron》2005,61(10):2601-2606
We theoretically investigate ring strains of tricyclic molecules or tricyclo[p.q.0.01,f]alkanes by calculating the strain energies as heat of the homodesmotic reactions. The strain energies are well correlated with the deformation from the tetrahedral configuration of the C1 atom. We theoretically design less strained tricyclic molecules by replacing some carbon atoms with phosphorus atoms.  相似文献   

10.
Detailed interaction energy maps are computed for symmetric cyclopropane and tetrahedrane dimer systems using ab initio methods. Interaction energies of cubane and cyclohexane dimers are also reported. The global minimum energy structures of cyclopropane and tetrahedrane systems are both D(3d) structures with energies of -1.850 and -2.171 kcal mol(-1). The ability of NIPE potential model, based on ab initio nonbonding data of neopentane (N), isobutane (I), propane (P), ethane (E) and all their combinations to predict the pair interaction energies of these strained cyclic hydrocarbons is also investigated. The difference between the energies predicted by NIPE and those obtained from the ab initio calculations increases with ring strain In general, NIPE values are in close agreement with the ab initio results for alkane ring structures having low ring strain.  相似文献   

11.
12.
Recently published syntheses, reactions and characterizations of unusual unsaturated ring strained Group 4 metallocene metallacycles like metalla-cyclocumulenes, -cycloallenes and -cycloalkynes with different ring size are updated for the last three years. There exist for some of these metallacycles, depending on the ring size, 7-, 5- and 4-membered compounds. The new results for these metallacycles are summarized here and considered in addition to the former published results. Additionally, several compounds of this type were now characterized by new reactions. For a better understanding of these compounds, some spectroscopical methods as well as theoretical calculations were published. Despite of these all-C-metallacycles, only in some cases the syntheses and reactions for the corresponding hetero-metallacycles were published too. Examples for these metallaheterocyclic compounds will not be considered in this article. All these unusual ring strained compounds have a great potential for a lot of interesting synthetic applications in the future. Additionally, they are very interesting from the theoretical point of view.  相似文献   

13.
Summary: In this work, backbiting and beta-scission reactions are investigated through Quantum Chemistry methods by adopting the Becke 3 parameters and Lee Yang Parr functional (B3LYP) and 6-31G(d,p) basis set. Namely, the 1:3, 1:5 and 1:7 backbiting reactions are studied for acrylonitrile polymerization. It was found that the backbiting 1:5 is the most favorited because this kinetic event leads to the formation of a 6 membered transition state, while the backbiting 1:3 requires high activation energy due to the formation of a highly strained 4 membered ring. 7:3 backbiting reaction was also examined, since it is an alternative pathway that can explain the formation of defects generated by radicals in the third position. Simulations showed that this kinetic step is characterized by high rate constant because of its low activation energy. The right and left beta-scission reactions from the mid chain radicals formed by the considered backbiting reactions are also studied. Computational analysis demonstrated that all beta-scission reactions are endothermic and both the right and left beta-scission reactions have the same activation energy, which seems to be more influenced by the position of the mid chain radical.  相似文献   

14.
Coupled-cluster investigations (CCSD/cc-pVDZ and CCSD/cc-pVQZ//CCSD/cc-pVDZ) of singlet cyclobutadiene and fifteen-substituted analogs were conducted. A local minimum with a square frame does not exist on their potential surfaces. The well-known rectangular D2h minimum, the square D4h transition state, and two additional stationary points were found on cyclobutadiene’s potential surface. This included a transition state with a rhombic carbon ring and C2h symmetry, separating two equivalent puckered C2v local minima. The predicted barriers were 19.7 and 19.8 kcal/mol at the CCSD/cc-pVDZ and CCSD/cc-pVQZ//CCSD/cc-pVDZ levels, respectively. The relative strain energies of rectangular D2h cyclobutadiene and all fifteen-substituted analogs were obtained from isodesmic reactions. Progressive substitution with methyl or BH2 groups continuously lowers ring strain while increasing substitution with fluorines or trifluoromethyl groups steadily increases ring strain. C4(BH2)4 is 16.6 and 13.3 kcal/mol less strained than cyclobutadiene while C4F4 is 17.7 and 21.5 kcal/mol more strained at the levels above. Cyclobutadiene is more strained than both cyclopropene and cyclobutene by 12.2 and 37.0 kcal/mol, respectively. Electron density contours indicate that fluorine substitution raised the electron density especially in the short C=C ring bonds above/below the ring plane (π-electrons) but not in the ring plane (σ-electrons). BH2-substitutions lower the ring π-electron density with little effect in the ring plane. Methyl substituents have little effect on electron densities. All rings retain a strong bond alternation tendency (rectangular) whether substituted with electron-donating or -attracting groups. One-bond coupling constants and the percent p-character in ring C-to-C and C-to-substituent bonds are described.  相似文献   

15.
The synthesis of structurally well‐defined, monodisperse carbon nanotube (CNT) sidewall segments poses a challenge in materials science. The synthesis of polyphenylene cylinders that comprise typical benzene connectivity to resemble precursors of [9,9] and [15,15] CNTs is now reported, and the products were characterized by X‐ray crystallography. To investigate the oxidative cyclodehydrogenation of ring‐strained molecules as a final step towards a bottom‐up synthesis of CNT sidewall segments, phenylene‐extended cyclic p‐hexaphenylbenzene trimers ([3]CHPB) were prepared, and NMR studies revealed a strain‐induced 1,2‐phenyl shift. It was further shown that an increase in ring size leads to selectively dehydrogenated macrocycles. Larger homologues are envisioned to give smooth condensation reactions toward graphenic sidewalls and should be used in the future as seeds for CNT formation.  相似文献   

16.
We demonstrate a model for determining the adsorptive and catalytic properties of strained metal surfaces based on linear elastic theory, using first-principles calculations of CO adsorption on Au and K surfaces and CO dissociation on Ru surface. The model involves a single calculation of the adsorption-induced surface stress on the unstrained metal surface, which determines quantitatively how adsorption energy changes with external strain. The model is generally applicable to both transition- and non-transition-metal surfaces, as well as to different adsorption sites on the same surface. Extending the model to both the reactant and transition state of surface reactions should allow determination of the effect of strain on surface reactivity.  相似文献   

17.
[4]Cyclo-9, 9-dimethyl-2, 7-fluorenylene ([4]CF) was used as a model compound to explore the steric strain effect on the structures and photoelectrical properties of materials. A series of strained cyclic polyfluorene materials, [n]CFs (n=3-8), was designed. It was found that the strain energy decreased and the energy gap increased as the number of n and ring diameter increased. The ionization potential and electronic affinity tended to increase and decrease as the strain energy decreased at the same number of [n]CFs, respectively. With a balance between hole and electron reorganization energies in the system, these compounds demonstrated great potential as ambipolar materials. It was also found that [n]CFs showed an obvious blue shift in their emission spectra wavelengths (λem2) as the strain energy decreased. Steric strain provides a powerful tool for the design of multifunctional semiconductors in organic optoelectronics.  相似文献   

18.
Recent advancements in metathesis catalyst design have allowed chemists to re-examine olefin metathesis as a route to systems bearing strained olefins embedded in their skeletons. Such ring systems include various azabicyclo [3.3.1] and [4.2.1] rings systems, the unique tricyclic ring system of the natural product ingenol, and strained macrocyclic systems exhibiting atropisomerism. Several examples of forming strained aromatic systems is also presented. The variety of different catalysts that have been developed allows for the possibility to select a catalyst having the necessary level of reactivity to access a strained system but also to avoid catalysts which may be so reactive as to favour ring-opening of the desired ring system.  相似文献   

19.
Highly strained, four-membered 1,2-diazetidine rings are produced in good yields (50-98%) in nucleophilic ring closure reactions provided ‘soft’ leaving groups such as iodide are used, a finding that can be rationalised in terms of the Hard Soft Acids and Bases principle.  相似文献   

20.
N-Alkyl imines of acenaphthenequinone are not stable because an isomerization occurs that releases part of the ring strain of the initially formed imine by changing the hybridization of one of the ring carbon atoms from sp(2) to sp(3); however, if an even more strained ring is present in the alkyl group, the isomerization becomes unfavorable and the compound is stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号