首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of a P4 butterfly complex with yellow arsenic yields the largest mixed PnAsm ligand complexes synthesized to date. [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] reacts with As4 to yield [{Cp′′′Fe}2(μ,η4:4‐PnAs4‐n)] and [Cp′′′Fe(η5‐PnAs5‐n)]. Mass spectrometry together with NMR spectroscopy and X‐ray crystallography give clear evidence about the arrangement of the E positions within the cyclo‐E5 and E4 moieties of the products. Moreover, the results of DFT calculations agree well with the experimental determined outcomes. By coordinating the E4 complex [{Cp′′′Fe}2(μ,η4:4‐PnAs4‐n)] with CuCl, a rearrangement of the E positions occurs in favor with a preferred phosphorus coordination towards copper atoms in the resulting 1D polymeric chain.  相似文献   

2.
Molecular-level understanding of metal-mediated white phosphorus (P4) activation is meaningful but challenging because of its direct relevance to the conversion of P4 into useful organophosphorus compounds as well as the complicated and unforeseeable cleavage process of P−P bonds. The related study, however, has still rarely been achieved to date. Here, a theoretical insight into the step-by-step process of three P−P bond cleavage/four P−C bond formation for [P3+P1]-fragmentation of P4 mediated by lutetacyclopentadienes is reported. The unique charge-separated intermediate and the intermolecular cooperation between two lutetacyclopentadienes play a vital role in the subsequent P−P/P−C bond breaking/forming. It is found that, although the first P−C formation is involved in the assembly of the cyclo-P3 [R4C4P3] unit, the construction of the aromatic five-membered P1 heterocycle [R4C4P] is completed prior to the cyclo-P3 formation. The reaction mechanism has been carefully elucidated by analyses of the geometric structure, frontier molecular orbitals, bond index, and natural charge, which greatly broaden and enrich the general knowledge of the direct functionalization of P4.  相似文献   

3.
A series of tetrahedral oligothiophenes bearing n‐hexyl groups at the α‐positions of the terminal thiophene rings, (n‐C6H13(C4H2S)n)4C (Hex‐TnTM; n=1–4), has been synthesized by Kosugi–Migita–Stille coupling as a key reaction. Thanks to the improved solubility afforded by the terminal n‐hexyl groups, the largest homologue (n=4) was successfully obtained. Whereas the smaller derivatives (n=1, 2) were obtained as liquid substances, the larger derivatives (n=3, 4) were obtained as solids. Hex‐T3 TM partially adopts syn conformations between the adjacent thiophene rings in the crystal, probably owing to the packing force. Hex‐T3 TM not only appeared in the crystalline state but also the amorphous state, which was stable to up to 80 °C. Regardless of the terminal groups, the derivatives of n=2 exhibited a broad fluorescence with large Stokes shifts compared to the corresponding linear analogues, thereby suggesting the presence of intramolecular interactions between the bithiophene moieties. Interactions between terthiophene branches was also suggested in the radical cations of Hex‐T3 TM by cyclic voltammetry measurements.  相似文献   

4.
Lithiated isopropylidene-telechelic polyisobutylenes (i.e., PIBs capped with end groups) are most interesting novel intermediates for further transformations, e.g., functionalization, polymerization. This report concerns model lithiation experiments of 2,4,4-trimethyl-1-pentene (TM1P) that guided us toward the subsequent quantitative lithiation of isopropylidene-telechelic PIBs. Thus, lithiation of TM1P with, n-, s-, and t-butyllithium, in the presence of various complexing agents (i.e., TMEDA, t-BuOK, 1,2-DPE, CH3OCH2CH2OCH3, THF, and 12-crown-4) followed by silylation with Me3SiCl (for the purpose of quantitation) gave three products: 2(trimethylsilylmethyl)-4,4-dimethyl-1-pentene (TM1P-Si), 2(trimethylsilylmethyl)-4,4-dimethyl-2-pentene (TM2P-Si2). The relative product composition strongly depends on the BuLi/complexing agent ratio and temperature. Among the different butyllithiums and complexing agents the best overall results were obtained with the s-BuLi/TMEDA combination. Complete lithiation of TM1P with minimum dilithiation was obtained using the molar ratio [s-BuLi]: [TMEDA]: [TM1P] = 2 : 2 : 1. The apparent activation energy of lithiation by s-BuLi/TMEDA was found to be 6.7 ± 0.8 kcal/mol. Guided by TM1P model experiments, quantitative monolithiation of isopropylidene-capped polyisobutylene (including ca. 4% chain and isomerization) was achieved using the molar ratio [s-BuLi] : [TMEDA] : [C? C] = 5 : 4 : 1.  相似文献   

5.
Catalytic and switchable C−H functionalization of N-heteroarenes under easily tunable conditions is a robust but challenging tool for the construction of biologically relevant compounds. Recently, a general electrochemical strategy has been developed for the direct C−H carboxylation of N-heteroarenes with CO2, and by simply choosing different types of cell setups, carboxylated products are furnished with excellent and tunable site selectivity. This study also paves the way for regulating the reactivity modes in electrochemical synthesis.  相似文献   

6.
Carboxylation of easily available alkenes with CO2 is highly important to afford value-added carboxylic acids. Although dicarboxylation of activated alkenes, especially 1,3-dienes, has been widely investigated, the challenging dicarboxylation of unactivated 1,n-dienes (n>3) with CO2 remains unexplored. Herein, we report the first dicarboxylation of unactivated skipped dienes with CO2 via electrochemistry, affording valuable dicarboxylic acids. Control experiments and DFT calculations support the single electron transfer (SET) reduction of CO2 to its radical anion, which is followed by sluggish radical addition to unactivated alkenes, SET reduction of unstabilized alkyl radicals to carbanions and nucleophilic attack on CO2 to give desired products. This reaction features mild reaction conditions, broad substrate scope, facile derivations of products and promising application in polymer chemistry.  相似文献   

7.
Designing compounds for the selective molecular recognition of carbohydrates is a challenging task for supramolecular chemists. Macrocyclic compounds that incorporate isophtalamide or bisurea spacers linking two aromatic moieties have proven effective for the selective recognition of all-equatorial carbohydrates. Here, we explore the molecular recognition properties of an octa-urea [Pd2L4]4+ cage complex ( 4 ). It was found that small anions like NO3 and BF4 bind inside 4 and inhibit binding of n-octyl glycosides. When the large non-coordinating anion ‘BArF’ was used, 4 showed excellent selectivity towards n-octyl-α-D-Mannoside with binding in the order of Ka≈16 M−1 versus non-measurable affinities for other glycosides including n-octyl-β-D-Glucoside (in CH3CN/H2O 91 : 9).  相似文献   

8.
The recent developments in the field of transition metal (TM) borate complexes have been a landmark in modern coordination chemistry. The structural diversities of these complexes play an important role in several catalytic processes. Generally, polypyrazolyl borate ligands, [BHn(pz)4-n] (n=1, 2; pz=pyrazolyl), popularly known as scorpionates have been used extensively for the preparation of TM borate complexes. The presence of multiple donor atoms in the flexible borate proligands led to several coordination modes. Based on the electronic and steric properties of these ligands and the metals, the denticity of borate ligands in TM complexes varied from κ0 to κ6. The presence of different bonding modes of these borate ligands made them very interesting in main group organometallic chemistry. In addition, cooperative activation of boranes by TM complexes containing metal-nitrogen or metal-sulfur bonds has become an alternative to the utilization of borate proligands for the synthesis of TM borate complexes. This review summarizes the advancements of the chemistry of TM borate complexes focusing exclusively on the synthetic methods and various bonding scenarios.  相似文献   

9.
Spectroscopic characterization of neutral highly-coordinated compounds is essential in fundamental and applied research, but has been proven to be a challenging experimental target because of the difficulty in mass selection. Here, we report the preparation and size-specific infrared-vacuum ultraviolet (IR-VUV) spectroscopic identification of group-3 transition metal carbonyls Sc(CO)7 and TM(CO)8 (TM=Y, La) in the gas phase, which are the first confinement-free neutral heptacarbonyl and octacarbonyl complexes. The results indicate that Sc(CO)7 has a C2v structure and TM(CO)8 (TM=Y, La) have a D4h structure. Theoretical calculations predict that the formation of Sc(CO)7 and TM(CO)8 (TM=Y, La) is both thermodynamically exothermic and kinetically facile in the gas phase. These highly-coordinated carbonyls are 17-electron complexes when only those valence electrons that occupy metal−CO bonding orbitals are considered, in which the ligand-only 4b1u molecular orbital is ignored. This work opens new avenues toward the design and chemical control of a large variety of compounds with unique structures and properties.  相似文献   

10.
Sequential reactions between a 2,6‐diisopropylphenyl‐substituted β‐diketiminato magnesium n‐butyl derivative and P4 allow the highly discriminating synthesis of unusual [nBu2P4]2? and [nBu2P8]2? cluster dianions.  相似文献   

11.
Direct C−H bond functionalization is a useful strategy for the straightforward formation of C−C and C−Heteroatom bonds. In the present work, a unique approach for the challenging electrophilic Au-catalyzed α-C−H bond functionalization of tertiary amines is presented. Electronic, steric and conformational synergistic effects exerted by the use of a malonate unit in the substrate were key to the success of this transformation. This new reactivity was applied to the synthesis of tetrahydro-γ-carboline products which, under oxidative conditions, could be converted into valuable structural motifs found in bioactive alkaloid natural products.  相似文献   

12.
Direct C−H bond functionalization is a useful strategy for the straightforward formation of C−C and C−Heteroatom bonds. In the present work, a unique approach for the challenging electrophilic Au-catalyzed α-C−H bond functionalization of tertiary amines is presented. Electronic, steric and conformational synergistic effects exerted by the use of a malonate unit in the substrate were key to the success of this transformation. This new reactivity was applied to the synthesis of tetrahydro-γ-carboline products which, under oxidative conditions, could be converted into valuable structural motifs found in bioactive alkaloid natural products.  相似文献   

13.
A copper complex bearing an N-heterocyclic carbene ligand with a pyrene “tail” attached to the backbone has been prepared and supported on reduced graphene oxide (rGO). The free and supported copper materials have been employed as homogeneous and heterogeneous catalysts in the functionalization of hydrocarbons such as n-hexane, cyclohexane, and benzene through incorporation of the CHCO2Et unit from ethyl diazoacetate. The graphene-anchored complex displays higher reaction rates and induces higher yields than its soluble counterpart, features that can be rationalized in terms of a decrease in electron density at the metal center due to a remote net electronic flux from the supported copper complex to the graphene surface.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 183. Lithium Tetrahydrogen Heptaphosphide and Lithium Octahydrogen Heptaphosphide Lithium tetrahydrogen heptaphosphide, LiH4P7 ( 1 ), and lithium octahydrogen heptaphosphide, LiH8P7 ( 2 ), belong to the first reaction products of the metalation of P2H4 with n-butyllithium that can be identified. Both compounds are also formed on reaction of Li3P7 with excess P2H4. 1 also results from the reaction of LiH4P5 with P2H4. Whereas 1 can be isolated as an orange-red crystalline solvent adduct in a purity of 60-70 per cent, 2 cannot be enriched further due to its extreme reactivity. The composition and the structure of 1 and 2 have been elucidated from their 31P-NMR spectra. Hence, 1 has a P7 skeleton analogous to that of norbornane, whereas 2 as a precursor in the formation of 1 from P2H4 and n-BuLi is an open-chain doubly branched heptaphosphide.  相似文献   

15.
Rh(III)-catalyzed C−H bond annulation of 2-arylquinoxalines with cyclic 2-diazo-1,3-diketones has been accomplished for the first time to synthesize a novel series of 2,3-dihydrodibenzo[a,c]phenazin-4(1H)-one frameworks by means of carbene insertion followed by condensation. The reaction proceeds through the C−H bond activation and functionalization of 2-arylquinoxalines using Rh(III)/AgSbF6 complex to produce highly substituted 2,3-dihydrodibenzo[a,c]phenazin-4(1H)-one and benzo[5,6][1,2,4]thiadiazino[2,3-f]phenanthridin-5(6H)-one-10,10-dioxide derivatives in good to excellent yields.  相似文献   

16.
Selective cleavage and functionalization of C−C bonds have important applications in organic synthesis and biomass utilization. However, functionalization of C−C bonds by controlled cleavage remains difficult and challenging because they are inert. Herein, we describe an unprecedented efficient protocol for the breaking of successive C−C bonds in alcohols to form esters with one or multiple carbon atoms less using heterogeneous cobalt nanoparticles as catalyst with dioxygen as the oxidant. A wide range of alcohols including inactive long-chain alkyl aryl alcohols undergo smoothly successive cleavage of adjacent −(C−C)n− bonds to afford the corresponding esters. The catalyst was used for seven times without any decrease in activity. Characterization and control experiments disclose that cobalt nanoparticles are responsible for the successive cleavage of C−C bonds to achieve excellent catalytic activity, while the presence of Co-Nx has just the opposite effect. Preliminary mechanistic studies reveal that a tandem sequence reaction is involved in this process.  相似文献   

17.
An efficient rare earth metal complex‐catalyzed cycloaddition reaction of CO2 with propylene oxide using Hdpza (di(2‐pyrazyl)amine) as a N‐donor ligand has been accomplished in good to excellent yields with high selectivity. The effects of different rare earth metal salts, ligands and reaction conditions were examined. Catalytic reaction tests demonstrated that the incorporation of ErCl3 and Hdpza can significantly enhance the catalytic reactivity of the TBAB (nBu4NBr, tetra‐n‐butyl ammonium bromide) towards cycloaddition reaction of CO2 and propylene oxide that produce cyclic carbonates under mild conditions without any co‐solvent.  相似文献   

18.
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize PdnL2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels–Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12L24, respectively. Furthermore, Pd12L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2L4 system.  相似文献   

19.
Amorphous silicon is synthesized by treating the tetrahalosilanes SiX4 (X=Cl, F) with molten sodium in high boiling polar and non‐polar solvents such as diglyme or nonane to give a brown or a black solid showing different reactivities towards suitable reagents. With regards to their technical relevance, their stability towards oxygen, air, moisture, chlorine‐containing reaction partners RCl (R=H, Cl, Me) and alcohols is investigated. In particular, reactions with methanol are a versatile tool to deliver important products. Besides tetramethoxysilane formation, methanolysis of silicon releases hydrogen gas under ambient conditions and is thus suitable for a decentralized hydrogen production; competitive insertion into the MeO?H versus the Me?OH bond either yields H‐ and/or methyl‐substituted methoxy functional silanes. Moreover, compounds, such as MenSi(OMe)4?n (n=0–3) are simply accessible in more than 75 % yield from thermolysis of, for example, tetramethoxysilane over molten sodium. Based on our systematic investigations we identified reaction conditions to produce the methoxysilanes MenSi(OMe)4?n in excellent (n=0:100 %) to acceptable yields (n=1:51 %; n=2:27 %); the yield of HSi(OMe)3 is about 85 %. Thus, the methoxysilanes formed might possibly open the door for future routes to silicon‐based products.  相似文献   

20.
An efficient catalytic room‐temperature direct α‐amidoalkylation of carbonyl donors, that is, ketones and aldehydes with unbiased N,O‐acetals, is described. Sn(NTf2)4 is an optimal catalyst to promote this challenging transformation at low loading and the reaction shows promising scope. A comprehensive and rational evaluation of this reaction has led to the establishment of an empirical scale of nucleophilic reactivity for a broad set of ketones that should be helpful in the synthetic design and development of carbonyl α‐functionalization methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号