首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three chiral polymers P‐1 , P‐2 , and P‐3 could be obtained by the polymerization of (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2, 2′‐binaphthol (R‐M‐1) , (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bisoctoxy‐1,1′‐binaphthyl ( R‐M‐2 ), and (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bis (diethylaminoethoxy)‐1,1′‐binaphthyl ( R‐M‐3 ) with 4,7‐diethynyl‐benzo[2,1,3]‐thiadiazole ( M‐1) via Pd‐catalyzed Sonogashira reaction, respectively. P‐1 , P‐2 , and P‐3 can show pale red, blue–green, and orange fluorescence. The responsive optical properties of these polymers on various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Co2+, Ni2+, Ag+, Cd2+, Cu2+, and Zn2+, Hg2+ can exhibit the most pronounced fluorescence response of these polymers. P‐1 and P‐2 show obvious fluorescence quenching effect upon addition of Hg2+, on the contrary, P‐3 shows fluorescence enhancement. Three polymer‐based fluorescent sensors also show excellent fluorescence response for Hg2+ detection without interference from other metal ions. The results indicate that these kinds of tunable chiral polybinaphthyls can be used as fluorescence sensors for Hg2+ detection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 997–1006, 2010  相似文献   

2.
手性高分子P–1由(R)-5,5′-二溴-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘(R–M–1)和5,5′-二乙烯基-2,2′-联吡啶(M–2)通过Pd催化的Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1与Eu(TTA)3·2H2O和Gd(TTA)3·2H2O (TTA– = 2-噻吩甲酰三氟丙酮)反应生成。手性高分子P-1能发射强的蓝色荧光,这是由于手性重复单元(R)-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘和单元2,2′-联吡啶通过亚乙烯基桥连形成共轭高分子结构造成的。在不同的激发波长激发下,含Eu(III)的高分子配合物P–2不仅显示高分子荧光,还可显示Eu(III) (5D0→7F2)特征荧光。含Gd(III)的高分子配合物P–3仅发射高分子荧光。基于高分子及含RE(III)的高分子配合物的荧光性质研究发现,共轭高分子并没有把能量转移到Eu(III)或Gd(III) 配合物部分,只发射它自身的荧光,含Eu(III)的高分子配合物P–2发射Eu(III) (5D0→7F2)特征荧光能量主要来源于配阴离子TTA–。  相似文献   

3.
(R)-6,6‘-Bis(triethoxysilylethen-2-yl)-2,2-‘binaphtho-20-crown-6(precursor,R-2) derived form(R)-2,2-BINOL derivative was synthesized by Pd-catelyzed Heck reaction of (R)-6-6‘-dibromo-2,2‘-binaphtoh-20-crown-6(R-1) intermediate with vinyltriethoxysilane. The hydrolysis and polycondensatlon ofthe precursor gave rise to the corresponding xerogei. Both pre cursor and xerogei were analysed by NMR, FT-IR, UV, CD spectra, fluorescent spectroscopy, polarimetry and elemental analysis. The precursor and xerogei can emit strong blue fluorescenee and are expected to have the potential appficatiou inthe separation of chiral molecules as fluorescent sensor. The precursor exhibits strong Cotton effect in its circular dichroism (CD) spectrum indicating that it is a highly rigid structure.  相似文献   

4.
Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S−)ClMBA2SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465–530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.  相似文献   

5.
3,3′-Diformyl-1,1′-bi-2-naphthol or its methoxymethyl-protected derivative is found to undergo a highly selective reaction with excess bromine in CH2Cl2 at reflux to give the novel 5,5′,6,6′-tetrabrominated product (S)- or (R)- 2 . The observed electrophilic substitution at the 5,5′-positons of an optically active binaphthyl compound is unprecedented. Unlike unbrominated 3,3′-diformyl-1,1′-bi-2-naphthol, which is not suitable for fluorescent recognition in water, compound (S)- 2 , in combination with Zn2+, exhibits a highly enantioselective fluorescent response toward amino acids in aqueous solution (HEPES buffer, pH 7.4). It is further found that the condensation product of (R)- 2 with tryptophan, (R)- 3 , shows dual-responsive emissions toward amino acids; the short wavelength (λ1=350 nm) emission is sensitive to the concentration of the substrate regardless of the chiral configuration and the long wavelength (λ2>500 nm) emission is highly enantioselective. Thus, the use of (R)- 3 allows the simultaneous determination of the concentration and enantiomeric composition of an amino acid sample from one fluorescence measurement.  相似文献   

6.
A modular approach was proposed for the preparation of chiral fluorescent molecular sensors, in which the fluorophore, scaffold, and chirogenic center can be connected by ethynyl groups, and these modules can easily be changed to other structures to optimize the molecular sensing performance of the sensors. This modular strategy to assembly chiral sensors alleviated the previous restrictions of chiral boronic acid sensors, for which the chirogenic center, fluorophore, and scaffold were integrated, thus it was difficult to optimize the molecular structures by chemical modifications. We demonstrated the potential of our new strategy by the preparation of a sensor with a larger scaffold. The photoinduced electron‐transfer (PET) effect is efficient even with a large distance between the N atom and the fluorophore core. Furthermore, the rarely reported donor‐PET (d‐PET) effect, which was previously limited to carbazole, was extended to phenothiazine fluorophore. The contrast ratio, that is, PET efficiency of the new d‐PET sensor, is increased to 8.0, compared to 2.0 with the previous carbazole d‐PET sensors. Furthermore, the ethynylated phenothiazine shows longer excitation wavelength (centered at 380 nm) and emission wavelength (492 nm), a large Stokes shift (142 nm), and high fluorescence quantum yield in aqueous solution (Φ=0.48 in MeOH/water, 3:1 v/v). Enantioselective recognition of tartaric acid was achieved with the new d‐PET boronic acid sensors. The enantioselectivity is up to 10 (ratio of the binding constants toward D ‐ and L ‐tartaric acid, kD/kL). A consecutive fluorescence enhancement/decrease was observed, thus we propose a transition of the binding stoichiometry from 1:1 to 1:2 as the analyte concentration increases, which is supported by mass spectra analysis. The boronic acid sensors were used for selective and sensitive recognition of disaccharides and glycosylated steroids (ginsenosides).  相似文献   

7.
Luminescent chiral cocrystal based on the self-assembly of 2,2'-binaphthol and 2-(3-pyridyl)-1H-benzimidazole (P.) has been developed, in which 100% R configuration of BINOL can be obtained in the cocrystal products. The final structure presents the same P.R. The studies suggested that the cocrystallization approach could have much flexibility and potential applications for the design of chiral fluorescent materials.  相似文献   

8.
Four chiral polymers P-1, P-2, P-3 and P-4 were synthesized by the polymerization of (S)-2,2'-dioctoxy-1,1'- binaphthyl-6,6'-boronic acid (S-M-3) with (S)-6,6'-dibromo-1,1'-binaphthol (S-M-1), (R)-6,6'-dibromo-1,1'- binaphthol (R-M-1), (S)-3,3'-diiodo-1,1'-binaphthol (S-M-2) and (R)-3,3'-diiodo-1,1'-binaphthol (R-M-2) under Pd-catalyzed Suzuki reaction, respectively. All four polymers can show good solubility in some common solvents due to the nonplanarity of the polymers in the main chain backbone and flexible alkyl groups in the side chain. The analysis results indicate that specific rotation and circular dichroism (CD) spectral signals of the alternative S-S chiral polymers P-1 and P-3 are larger than those of S-R chiral polymers P-2 and P-4, but their UV-Vis and fluorescence spectra are almost similar. The results of asymmetric enantioselectivity of four polymers for diethylzinc addition to benzaldehyde indicate that catalytically active center is (R) or (S)-1, 1'-binaphthol moieties.  相似文献   

9.
The structure of (+)-β-turmerone ((+)- 1a ), a constituent of the rhizomes of Curcuma longa Linn. , and Curcuma xanthorriza, is established as (1′R,6S)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-one by synthesis of its enantiomer (−)- 1a , and of the corresponding (1′S,6S)-diastereoisomer (+)- 1b as well. In a stereospecific seventeen-step procedure, the monoterpene diols 2a and 2b of well-established configuration are converted into the target compounds (−)- 1a and (+)- 1b , respectively. Moreover, (−)-bisacurol (−)- 3a (II), the enantiomer of another bisabolane sesquiterpene derived from Curcuma xanthorriza, is obtained as a single stereoisomer and shown to be (1′S,6R)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-ol, the relative configuration at the remaining OH-substituted chiral center C(4) still being unknown.  相似文献   

10.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule.  相似文献   

11.
All eight stereoisomers of α-tocopheryl acetate have been synthesized in a state of high chemical and stereoisomeric purity. Key chiral side-chain intermediates were prepared from (+)-(S)-3-hydroxy-2-methylpropanoic acid. New routes to (2R, 4′ RS, 8′ RS)-α-tocopheryl acetate, a mixture of four diastereoisomers, were also developed. A sensitive gas chromatographic method was developed to determine the diastereoisomeric and enantiomeric purity of α-tocopherol samples as the methyl ethers. It was established for the first time that naturally occurring α-tocopherol is essentially a single enantiomer (2 R, 4′ R, 8′ R), synthetic all-rac-α-tocopherol an equimolar mixture of four racemates, and that natural (E)-(7 R, 11 R)-phytol is diastereoisomerically and enantiomerically homogeneous.  相似文献   

12.
The determination of the enantiomeric composition of 2,2′,6′6′-tetrasubstituted biphenyls using 1H NMR spectroscopy, in combination with chiral lanthanide shift reagents, has been studied. In general, the S compounds give largeer induced shifts than the correspondind R isomers when d-camphor derived shift reagents are used.  相似文献   

13.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

14.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

15.
Chroma to graphic Separation and Identification of Diastereomeric Carotinoids with Distant Chiral Centers The high-performance liquid chromatographic separation of diastereomeric C40-carotinoids is described possessing chiral centers which are separated by 18 C-atoms (nonaene system). The method is applied to the separation of the two diastereomers of 6,6′-dihydrorhodoxanthin 1a and 1b (ε,ε-carotene-3,3′-dione) and the six diastereomers of tunaxanlhin (ε,ε-carotene-3,3′-diol; 2a–2f ). Conditions for the separation of lutein [(3R, 3′R, 6′R)-β,ε-carotene-3.3′-diol, 3a ], 3′-epi-lutein [(3R,3′S,6′R)-β, ε-carotene-3,3′-diol, 3b ] and its 13′-cis- ( 3c ) and 13-cis-stereo-isomers( 3d ) are also reported. Identification of the different chromatographic fractions was possible by use of authentic synthetic samples or by 1H-NMR. spectroscopy.  相似文献   

16.
A series of carbazole-based boron dipyrromethenes (BODIPYs) 2 a – g bearing binaphthyl units have been synthesized by the Et2AlCl-mediated reaction of the corresponding BODIPY difluorides 1 a – g with 1,1′-binaphthalene-2,2′-diol. Substituents such as halogen, nitrile, and amino groups were tolerated under the reaction conditions, and the reaction of the phenylethynyl-substituted 1 h gave (R,R)- 3 h bearing two binaphthyl units. The chiroptical properties of these dyes with different substituents were investigated by UV/Vis, CD, fluorescence, and circularly polarized luminescence (CPL) spectroscopy. The CD spectra showed Cotton effects in the absorption region of the BODIPY moieties. In addition, they showed CPL both in solution and in the solid state. Interestingly, several dyes recorded higher glum values in the solid state, probably due to intermolecular interactions. Because (R,R)- 3 h recorded relatively low glum values, the diastereomer (R,S)- 3 h was prepared. The (R,S) diastereomer showed intense CPL, which suggests a synergetic effect of the two binaphthyl groups. Finally, chiral carbazole-based BODIPY dimers have been synthesized for the first time and their chiroptical properties were investigated. They showed redshifted fluorescence and CPL, which reached the near-IR (NIR) region in the solid state.  相似文献   

17.
The synthesis, absolute configuration, and olfactive evaluation of (?)-(E)-α-trans-bergamotenone (= (?)-(1′S,6′R,E)-5-(2′,6′-dimethylbicyclo[3.1.1]hept-2′-en-6′-yl)pent-3-en-2-one; (?)- 1 ), as well as its homologue (?)- 19 are reperted. The previously arbitrarily attributed absolute configuration of 1 and of (?)-α-trans-bergamotene (= (?)-(1 S,6R)-2,6-dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1. 1]hept-2-ene; (?)- 2 ), together with those of the structurally related aldehydes (?)- 3a,b and alcohols (?)- 4a,b , have been rigorously assigned.  相似文献   

18.
Density functional theory (DFT) 1H–1H NMR coupling constant calculations, including solvation parameters with the polarizable continuum model B3LYP/DGDZVP basis set together with the experimental values measured by spectral simulation, were used to predict the configuration of hydroxylated 6‐heptenyl‐5,6‐dihydro‐2H‐pyran‐2‐ones 1 , 2 , 4 , and 7 , allowing epimer differentiation. Modeling of these flexible compounds requires the inclusion of solvation models that account for stabilizing interactions derived from intramolecular and intermolecular hydrogen bonds, in contrast with peracetylated derivatives ( 3 , 5 , and 6 ) in which the solvation consideration can be omitted. Using this DFT NMR integrated approach as well as spectral simulation, the configurational reassignment of synargentolide A ( 8 ) was accomplished by calculations in the gas phase among four possible diastereoisomers ( 8–11 ). Calculated 3JH,H values established its configuration as 6R‐[4′S,5′S,6′S‐(triacetyloxy)‐2E‐heptenyl]‐5,6‐dihydro‐2H‐pyran‐2‐one ( 8 ), in contrast with the incorrect 6R,4′R,5′R,6′R‐diastereoisomer previously proposed by synthesis ( 12 ). Application of this approach increases the probability for successful enantiospecific total syntheses of flexible compounds with multiple chiral centers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
《中国化学快报》2023,34(6):108041
Chirality is one of the most important features of the nature. The recognition of enantiomers plays significant roles in the field of life science, pharmaceutical analysis and food chemistry. Among various recognition methods, fluorescence spectrometry has attracted much attention of researchers thanks to its high sensitivity and easy operation. Compared with traditional fluorescent probes, chiral molecules with aggregation-induced emission (AIE) have drawn increasing interests due to their huge potential in high-efficiency chemo/biosensors and solid emitters. Chiral AIE luminogens (AIEgens) can not only discriminate two enantiomers with excellent enantioselectivity, but also show general applicability for many chiral analytes, such as chiral acids, amino acids, amines, alcohols. In this review, we mainly summarized the recent development of chiral probes with AIE properties, including chiral tetraphenylethylene (TPE) derivatives, α-cyanostilbene derivatives, Schiff base derivatives and other AIEgens. Their synthetic routes, recognition capabilities and possible working mechanisms were well discussed. It is envisioned that the present review can give some significant guidance for design and synthesis of chiral AIEgens with good enantioselectivity and inspire more readers to join the research of chiral AIE.  相似文献   

20.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号