首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum disulfide (MoS2) is a promising candidate as a high‐performing anode material for sodium‐ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon‐based materials, but it is quite challenging. Herein, we demonstrate a single‐step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5‐amino‐1H‐tetrazole (5‐ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2, polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg?1 at current densities of 100 and 1000 mAg?1, respectively, for SIBs.  相似文献   

2.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

3.
The influence of hierarchical porosity on electrocatalytic property was investigated with Pt nanoparticles supported on three types of carbon materials, namely, commercial Vulcan XC-72, ordered mesoporous carbon CMK-5, and hierarchical carbon aerogel (HCA). The electrocatalytic activity of carbon supported Pt nanoparticles was verified by cyclic voltammetry in H2SO4 and CH3OH solution. Pt/HCA presented superior performance with higher peak current (7.5 mA·cm−2) and electrochemical active area (128.0 m2·g−1). This could be attributed to the carbon aerogel with continuous but nonperiodical mesopore structure, which facilitated dispersion of Pt nanoparticles and mass transport around reactants and products.  相似文献   

4.
A dual‐templating method was used to synthesize a series of hierarchical carbon supports containing different proportions of spherical macropores (ca. 200 nm in diameter) and mesoporous channels (ca. 4 nm in diameter). These and some other conventional carbon materials were subsequently impregnated with Ni and tested for the conversion of glycerol. The hierarchical catalysts exhibited a significantly higher conversion (96%) and selectivity (77%) to 1,2‐propanediol, and the specificity selectivity coefficient (6.1) towards 1,2‐propanediol against lactic acid was three times higher than that observed over a conventional Ni/Cmicro catalyst (2.1). The enhanced performance of these materials, compared with the Ni nanoparticles supported on conventional carbon supports, was attributed to their high surface areas (> 1110 m2?g?1) and large pore volumes (ca. 0.4 cm3?g?1) permitting greater accessibility of substrate and/or intermediates to Ni active sites. Given that the concentration of accessible Ni sites in these materials is higher, a competitive benzilic‐acid‐rearrangement reaction to produce lactic acid was suppressed, leading to an enhanced hydrogenation selectivity to 1,2‐propanediol. This study evidences the potential benefits, which can be established from utilizing hierarchical support materials in the valorization of biomass.  相似文献   

5.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three‐layered Cu2S@carbon@MoS2 as anode materials for sodium‐ion batteries is reported. Through a facile multistep template‐engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon‐coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three‐layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

6.
《中国化学快报》2020,31(9):2202-2206
The triblock copolymer (PAA-b-PAN-b-PAA) is prepared by reversible addition-fragmentation chain-transfer polymerization, and then blended with polymer (PAN) and metal hydroxide (Ni(OH)2) as a precursor for heat-treatment. A composite material of hierarchical porous nanofibers and nickel oxide nanoparticles (HPCF@NiO) is prepared by electrospinning combined with high-temperature carbonization. The effects of the ratio of PAA and PAA-b-PAN-b-PAA on the internal structure of nanofibers and their electrochemical properties as positive electrode materials are investigated. The experimental results show that when the ratio of PAA to PAA-b-PAN-b-PAA is 1.3 to 0.4, it has good pore structure and excellent electrochemical performance. At the current density of 1 A/g, the specific capacitance is 188.7 F/g and the potential window is −1 V to 0.37 V. The asymmetric supercapacitor assembled with activated carbon as the negative electrode materials has a specific capacitance of 21.2 F/g in 2 mol/L KOH and a capacitance retention of 85.7% after 12,500 cycles at different current density.  相似文献   

7.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   

8.
Confining nanostructured electrode materials in porous carbon represents an effective strategy for improving the electrochemical performance of lithium-ion batteries. Herein, we report the design and synthesis of hybrid hollow nanostructures composed of highly dispersed Co3O4 hollow nanoparticles (sub-20 nm) embedded in the mesoporous walls of carbon nanoboxes (denoted as H-Co3O4@MCNBs) as an anode material for lithium-ion batteries. The facile metal–organic framework (MOF)-engaged strategy for the synthesis of H-Co3O4@MCNBs involves chemical etching-coordination and subsequent two-step annealing treatments. Owing to the unique structural merits including more active interfacial sites, effectively alleviated volume variation, good and stable electrical contact, and easy access of Li+ ions, the H-Co3O4@MCNBs exhibit excellent lithium-storage performance in terms of high specific capacity, excellent rate capability, and cycling stability.  相似文献   

9.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   

10.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three-layered Cu2S@carbon@MoS2 as anode materials for sodium-ion batteries is reported. Through a facile multistep template-engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon-coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three-layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

11.
The developing field of sensors is highly motivated and attracted by two-dimensional transition metal dichalcogenides (TMDs) with transition metal oxide integration. Initially, molybdenum disulfide (MoS2), one among the TMDs with cerium-zirconium oxide (CZO), was one-pot synthesized via hydrothermal method for sensing flutamide (FLD). The as-synthesized hybrid nanocomposite was characterized to understand their physical and chemical presence. MoS2-CZO was well assigned with crystalline nature observed from X-ray powder diffraction and X-ray photoelectron spectroscopy. High-resolution transmission electron microscopy confirms the irregularly arranged nanoparticles wrapped with MoS2 sheets. The wide surface area with more electroactive sites has provided higher conductance of the MoS2-CZO/glassy carbon electrode. The limit of detection was 0.005 μM with a linear range of 0.019 μM to 668.5 μM, sensitivity 0.353 μA μM?1 cm?2. The practical feasibility was analyzed with human urine and river water samples, whereas the obtained results showed excellent FLD detection. The fabricated MoS2-CZO with all these distinguished analyses will be an outbreak in the field of electrochemical sensors.  相似文献   

12.
《印度化学会志》2021,98(10):100169
Symmetric supercapacitor devices were fabricated from MoS2 incorporated carbon allotropes such as activated carbon (AC)/MoS2, graphene/MoS2 and MWCNT/MoS2. The device performance was evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The electrochemical properties of the devices fabricated from carbon allotropes (activated carbon, graphene, MWCNT) were remarkably enhanced to above 50% by the incorporation MoS2 phases. Out of the three fabricated devices, electrochemical performance of AC/MoS2 as found to be superior. The specific capacitance and energy density of this device is 216 ​F/g and 6.2 ​Wh/Kg respectively with excellent higher rate capability and longer cyclic durability. The devices fabricated from graphene/MoS2 and MWCNT/MoS2 has exhibited a specific capacitance value of 202 ​F/g and 161 ​F/g with an energy density value of 5.68 ​Wh/Kg and 3.95 ​Wh/Kg respectively.  相似文献   

13.
h‐BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid‐phase production of h‐BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h‐BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon‐encapsulated h‐BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h‐BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials.  相似文献   

14.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

15.
Two types of templates, an active metal salt and silica nanoparticles, are used concurrently to achieve the facile synthesis of hierarchical meso/microporous FeCo‐Nx‐carbon nanosheets (meso/micro‐FeCo‐Nx‐CN) with highly dispersed metal sites. The resulting meso/micro‐FeCo‐Nx‐CN shows high and reversible oxygen electrocatalytic performances for both ORR and OER, thus having potential for applications in rechargeable Zn–air battery. Our approach creates a new pathway to fabricate 2D meso/microporous structured carbon architectures for bifunctional oxygen electrodes in rechargeable Zn–air battery as well as opens avenues to the scale‐up production of rationally designed heteroatom‐doped catalytic materials for a broad range of applications.  相似文献   

16.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

17.
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.  相似文献   

18.
In this study, a novel strategy to amplify electrochemical signals by mesoporous PdPt nanoparticles with core-shell structures anchored on a three-dimensional PANI@CNTs network as nanozyme labels (PdPt/PANI@CNTs) was proposed for the sensitive monitoring of α-fetoprotein (AFP, Ag). First, the mesoporous PdPt nanoparticles prepared by a facile chemical reduction method had excellent biocompatibility with biomolecules, which could capture a large amount of AFP-Ab2 (Ab2) and exhibit plentiful pores to entrap more thionine (Thi) into mesoporous PdPt nanoparticles with enhanced loading and abundant active sites. Furthermore, the resulting mesoporous PdPt nanoparticles were abundantly dotted on the surface of a three-dimensional PANI@CNTs network with excellent conductivity and a high specific surface area through the bonding of the amino group to form PdPt/PANI@CNTs nanozyme labels. Most importantly, the as-prepared PdPt/PANI@CNTs nanozyme labels exhibited unexpected enzyme-like activity towards the reduction of hydrogen peroxide owing to the highly indexed facets, enhancing the current response to realize signal amplification. In view of the advantages of nanozyme labels and the involvement of gold nanoparticles (AuNPs, which behave as electrode materials) for the sensitive determination of AFP, the as-developed immunosensor could obtain a dynamic working range of 0.001 ng mL−1–100.0 ng mL−1 at a detection limit of 0.33 pg mL−1 via DPV (at 3σ). Furthermore, the nanozyme-based electrochemical immunosensor exhibited remarkable analytical performance, which brought about feasible ideas for disease diagnosis in the future.  相似文献   

19.
Porous carbon nitride frameworks (PCNFs) with uniform and rich nitrogen dopants and abundant porosity were successfully fabricated through the direct carbonization of the covalent triazine frameworks (CTFs) at different pyrolysis temperatures and used as supports to anchor and stabilize Ag nanoparticles (NPs) for catalytic CO2 conversion. Importantly, the pyrolysis temperature plays a crucial role in the properties of porous carbon nitride frameworks. The material carbonized at 700 °C showed the highest surface area and micro- and mesoporous structure with a certain interlayer distance. Taking advantage of their unique surface characteristics, PCNF-supported Ag NP catalysts (Ag/PCNF-T, T=pyrolysis temperature) were prepared by a simple chemical method. A series of characterizations revealed that Ag NPs are embedded in the porous carbon nitride frameworks and confined to a relatively small size with high dispersion owing to the assistance of the abundant surface groups and porous structures. The as-obtained Ag/PCNF-T catalysts, especially Ag/PCNF-700, showed excellent catalytic activity, selectivity, and stability for the carboxylation of CO2 with terminal alkynes under mild conditions. This can be due to the existence of abundant nitrogen atoms and diverse porosity, which resulted in highly efficient catalytic activity and stability.  相似文献   

20.
Hierarchical mesoporous carbon materials with large microporosity were prepared by direct tri-constituent co-assembly with the use of resols as the carbon precursor, tetraethyl orthosilicate as the inorganic precursor, and triblock copolymer F127 as the soft template. Bimodal pore size distributions in the range of 1.5–4 and 7.5–12 nm were obtained in the synthesized hierarchical mesoporous carbon materials after etching of silica by HF acid, showing a high surface area of 1,675 m2?g?1 with a large pore volume of 2.06 cm3?g?1. The electrochemical performance of the hierarchical mesoporous carbons was evaluated as an electrode material for electrochemical supercapacitor, showing a specific capacitance as high as 152 F?g?1 at a scan rate of 5 mV?s?1 in 6 M KOH aqueous solution and a good cycling stability with capacitance retention of 99 % over 500 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号