首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solar-driven CO2 reduction integrated with C−C/C−X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C−H bonds for accessing allylic C−C products, over SiO2-supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C−C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2–5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.  相似文献   

2.
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C−H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C−H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C−H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN2′-allylation pathway.  相似文献   

3.
Carboalumination of alkynes in the presence of catalytic Cp2ZrCl2 and H2O affords vinyl‐alane intermediates, which serve as nucleophiles in the subsequent addition to enantiomerically enriched (tert‐butyl)‐ and (para‐tolyl)sulfinimines. This new in situ protocol produces two new C C bonds. Chiral allylic sulfinamides are obtained in high diastereoselectivity and in good yield. Cleavage of the chiral auxiliary leads to synthetically useful allylic amine building blocks, and facile oxidative degradation of the alkene moiety can be used as an approach toward amino acid derivatives and for assignment of absolute configuration.  相似文献   

4.
A catalytic intermolecular allylic C−H trifluoromethoxylation reaction of alkenes has been developed based on the use of a palladium catalyst, CsOCF3 as the trifluoromethoxide source, and benzoquinone as the oxidant. This reaction provides an efficient route for directly accessing allylic trifluoromethoxy derivatives with excellent regioselectivities from terminal alkenes via an allylic C−H bond activation process.  相似文献   

5.
The gold-catalyzed intermolecular oxyarylation of alkenes is reported. This work employed the oxidative addition of aryl iodides to Me−DalphosAu+ for the formation of a AuIII−Ar intermediate. The better binding ability of alkenes over O nucleophiles ensured the success of intermolecular oxyarylation, giving desired products with a broad substrate scope and high efficiency (>50 examples with up to 95 % yield). One-pot converting of methoxy groups into other nucleophiles allowed achieving alkene difunctionalization with the construction of C−N, C−S, and C−C bonds under mild conditions.  相似文献   

6.
A palladium‐catalyzed asymmetric intramolecular allylic C−H amination controlled by a chiral phosphoramidite ligand was established for the preparation of various substituted chiral hydropyrimidinones, the precursors of hydropyrimidines, in high yields with high enantioselectivities. In particular, dienyl sodium N ‐sulfonyl amides bearing an arylethene‐1‐sulfonyl group underwent a sequential allylic C−H amination and intramolecular Diels–Alder (IMDA) reaction to produce chiral fused tricyclic tetrahydropyrimidinone frameworks in high yields and with high levels of stereoselectivity. Significantly, this method was used as the key step in an asymmetric synthesis of letermovir.  相似文献   

7.
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C−F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C−I bonds of the aryl iodides and the C−F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C−F bonds was avoided to permit their transformation.  相似文献   

8.
Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)‐H8‐BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α‐position of β‐ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β‐ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated.  相似文献   

9.
The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)‐catalyzed allylic C−H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide‐oxazoline (ArSOX) ligand. The allylic C−H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee).  相似文献   

10.
Regio- and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N-sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site-selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S-NTTL)4 is the most effective chiral catalyst for triazole-derived carbene transformations, whereas Rh2(S-TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ-functionalized allyl silyl ethers with high diastereo- and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4-disubstituted l -proline scaffold.  相似文献   

11.
C−N bond formation is regarded as a very useful and fundamental reaction for the synthesis of nitrogen-containing molecules in both organic and pharmaceutical chemistry. Noble-metal and homogeneous catalysts have frequently been used for C−N bond formation, however, these catalysts have a number of disadvantages, such as high cost, toxicity, and low atom economy. In this work, a low-toxic and cheap iron complex (iron ethylene-1,2-diamine) has been loaded onto carbon nanotubes (CNTs) to prepare a heterogeneous single-atom catalyst (SAC) named Fe-Nx/CNTs. We employed this SAC in the synthesis of C−N bonds for the first time. It was found that Fe-Nx/CNTs is an efficient catalyst for the synthesis of C−N bonds starting from aromatic amines and ketones. Its catalytic performance was excellent, giving yields of up to 96 %, six-fold higher than the yields obtained with noble-metal catalysts, such as AuCl3/CNTs and RhCl3/CNTs. The catalyst showed efficacy in the reactions of thirteen aromatic amine substrates, without the need for additives, and seventeen enaminones were obtained. High-angle annular dark-field scanning transmission electron microscopy in combination with X-ray absorption spectroscopy revealed that the iron species were well dispersed in the Fe-Nx/CNTs catalyst as single atoms and that Fe-Nx might be the catalytic active species. This Fe-Nx/CNTs catalyst has potential industrial applications as it could be cycled seven times without any significant loss of activity.  相似文献   

12.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

13.
3H-Phosphaallenes, R−P=C=C(H)C−R’ ( 3 ), are accessible in a multigram scale on a new and facile route and show a fascinating chemical reactivity. BH3(SMe2) and 3 a (R=Mes*, R’=tBu) afforded by hydroboration of the C=C bonds of two phosphaallene molecules an unprecedented borane ( 7 ) with the B atom bound to two P=C double bonds. This compound represents a new FLP based on a B and two P atoms. The increased Lewis acidity of the B atom led to a different reaction course upon treatment of 3 a with H2B-C6F5(SMe2). Hydroboration of a C=C bond of a first phosphaallene is followed in a typical FLP reaction by the coordination of a second phosphaallene molecule via B−C and P−B bond formation to yield a BP2C2 heterocycle ( 8 ). Its B−P bond is short and the B-bound P atom has a planar surrounding. Treatment of 3 a with tBuLi resulted in deprotonation of the β-C atom of the phosphaallene ( 9 ). The Li atom is bound to the P atom as demonstrated by crystal structure determination, quantum chemical calculations and reactions with HCl, Cl-SiMe3 or Cl-PtBu2. The thermally unstable phosphaallene Ph−P=C=C(H)-tBu gave a unique trimeric secondary product by P−P, P−C and C−C bond formation. It contains a P2C4 heterocycle and was isolated as a W(CO)4 complex with two P atoms coordinated to W ( 15 ).  相似文献   

14.
Density functional theory calculations were carried out to reveal the mechanistic details of aldehyde–alkyne reductive couplings with trialkylsilane/dialkylsilane. The reaction with trialkylsilane is found to proceed through oxidative cyclization, Si-H/Ni-O σ-bond metathesis, and C(sp2)-H reductive elimination, leading to silylated allylic alcohols. The steric hindrance between the n-pent group of alkyne and iPr group of the NHC ligand determines the regioselectivity. While for the reaction with dialkylsilane, the present calculations propose a new mechanism, which consists of oxidative cyclization, Si−H/Ni−O σ-bond metathesis, Ni−C/Si−H σ-bond metathesis, and dehydrogenation, resulting in oxasilacyclopentenes. The calculated energy profiles rationalize the experimentally observed chemodivergence.  相似文献   

15.
A photoinduced decarboxylative three-component coupling reaction involving amine, maleic anhydride, and fluorinated alkyl iodides has been developed, leading to synthetically valuable fluoroalkyl-containing acrylamides with a high E selectivity. A broad array of substrates including monoprotected amino acid are capable coupling partners. Preliminary mechanistic studies suggest a stepwise process. This reaction represents the first example of photoinduced decarboxylative difunctionalization of maleic anhydride.  相似文献   

16.
We report chiral RhIII cyclopentadienyl-catalyzed enantioselective synthesis of lactams and isochromenes through oxidative [4+1] and [5+1] annulation, respectively, between arenes and 1,3-enynes. The reaction proceeds through a C−H activation, alkenyl-to-allyl rearrangement, and a nucleophilic cyclization cascade. The mechanisms of the [4+1] annulations were elucidated by a combination of experimental and computational methods. DFT studies indicated that, following the C−H activation and alkyne insertion, a RhIII alkenyl intermediate undergoes δ-hydrogen elimination of the allylic C−H via a six-membered ring transition state to produce a RhIII enallene hydride intermediate. Subsequent hydride insertion and allyl rearrangement affords several rhodium(III) allyl intermediates, and a rare RhIII η4 ene-allyl species with π-agostic interaction undergoes SN2′-type external attack by the nitrogen nucleophile, instead of C−N reductive elimination, as the stereodetermining step.  相似文献   

17.
Herein, we report the meta-nitration of arenes bearing ortho/para directing group(s) using the iridium-catalyzed C−H borylation reaction followed by a newly developed copper(II)-catalyzed transformation of the crude aryl pinacol boronate esters into the corresponding nitroarenes in a one-pot fashion. This protocol allows the synthesis of meta-nitrated arenes that are tedious to prepare or require multistep synthesis using the existing methods. The reaction tolerates a wide array of ortho/para-directing groups, such as −F, −Cl, −Br, −CH3, −Et, −iPr −OCH3, and −OCF3. It also provides regioselective access to the nitro derivatives of π-electron-deficient heterocycles, such as pyridine and quinoline derivatives. The application of this method is demonstrated in the late-stage modification of complex molecules and also in the gram-scale preparation of an intermediate en route to the FDA-approved drug Nilotinib. Finally, we have shown that the nitro product obtained by this strategy can also be directly converted to the aniline or hindered amine through Baran's amination protocol.  相似文献   

18.
The direct replacement of sp3 C−H bonds with simple amine units (−NH2) remains synthetically challenging, although primary aliphatic amines are ubiquitous in medicinal chemistry and natural product synthesis. We report a mild and selective protocol for preparing primary and secondary aliphatic amines in a single pot, based on intermolecular sp3 C−H imination. The first C−H imination of diverse alkanes, this method shows useful site-selectivity within substrates bearing multiple sp3 C−H bonds. Furthermore, this reaction tolerates polar functional groups relevant for complex molecule synthesis, highlighted in the synthesis of amine pharmaceuticals and amination of natural products. We characterize a unique C−H imination mechanism based on radical rebound to an iminyl radical, supported by kinetic isotope effects, stereoablation, resubmission, and computational modeling. This work constitutes a selective method for complex amine synthesis and a new mechanistic platform for C−H amination.  相似文献   

19.
C−O bond activation of DPEphos occurs upon mild heating in the presence of [Ru(NHC)2(PPh3)2H2] (NHC=N-heterocyclic carbene) to form phosphinophenolate products. When NHC=IEt2Me2, C−O activation is accompanied by C−N activation of an NHC ligand to yield a coordinated N-phosphino-functionalised carbene. DFT calculations define a nucleophilic mechanism in which a hydride ligand attacks the aryl carbon of the DPEphos C−O bond. This is promoted by the strongly donating NHC ligands which render a trans dihydride intermediate featuring highly nucleophilic hydride ligands accessible. C−O bond activation also occurs upon heating cis-[Ru(DPEphos)2H2]. DFT calculations suggest this reaction is promoted by the steric encumbrance associated with two bulky DPEphos ligands. Our observations that facile degradation of the DPEphos ligand via C−O bond activation is possible under relatively mild reaction conditions has potential ramifications for the use of this ligand in high-temperature catalysis.  相似文献   

20.
The RhIII-catalyzed, consecutive double C−H oxidative coupling of free 1-naphthylamine and α,β-unsaturated esters through C−H/C−H and C−H/N−H bonds is reported. The one step reaction leads to the formation of biologically important alkylidene-1,2-dihydrobenzo[cd]indoles scaffolds. This efficient process is much more synthetically convenient and useful than others because the starting materials, such as 1-naphthylamine derivatives are readily available and the free amine serves as a directing group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号