首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all‐organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical‐based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries.  相似文献   

2.
本文通过磺化石墨烯对Nafion膜进行改性,研究了磺化石墨烯/Nafion复合膜(GRS-Nafion复合膜)的吸水率、电阻率和钒离子迁移数. 结果表明,经磺化石墨烯改性之后,GRS-Nafion复合膜的面电阻和钒离子渗透率显著降低. 全钒液流电池的测试结果表明,GRS-Nafion复合膜有着更加优异的电化学性能,展示出GRS-Nafion复合膜在液流电池中的应用潜力.  相似文献   

3.
Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.  相似文献   

4.
Despite intense research in the field of aqueous organic redox flow batteries, low molecular stability of electroactive compounds limits further commercialization. Additionally, currently used methods typically cannot differentiate between individual capacity fade mechanisms, such as degradation of electroactive compound and its cross-over through the membrane. We present a more complex method for in situ evaluation of (electro)chemical stability of electrolytes using a flow electrolyser and a double half-cell including permeation measurements of electrolyte cross-over through a membrane by a UV–VIS spectrometer. The method is employed to study (electro)chemical stability of acidic negolyte based on an anthraquinone sulfonation mixture containing mainly 2,6- and 2,7-anthraquinone disulfonic acid isomers, which can be directly used as an RFB negolyte. The effect of electrolyte state of charge (SoC), current load and operating temperature on electrolyte stability is tested. The results show enhanced capacity decay for fully charged electrolyte (0.9 and 2.45% per day at 20 °C and 40 °C, respectively) while very good stability is observed at 50% SoC and lower, even at 40 °C and under current load (0.02% per day). HPLC analysis conformed deep degradation of AQ derivatives connected with the loss of aromaticity. The developed method can be adopted for stability evaluation of electrolytes of various organic and inorganic RFB chemistries.  相似文献   

5.
Diketopyrrolopyrrole (DPP) derivatives with thiophene capping rings are widely used as semiconductors in organic electronics. Their optoelectronic properties can be adjusted by adding different electroactive groups or by extending the conjugation of the central core, as well as by regulating their self-assembly through noncovalent interactions. One effective strategy demonstrated to improve the performance and morphology of organic solar cells is incorporating hydrogen-bonding units into DPPs. While the functionalization of the DPP lactams and the coupling of aromatic units to the thiophene rings are the most common procedures to tune the properties of such derivatives, modifying the thiophene capping units with hydrogen-bonding groups is a challenging synthetic task. Despite this difficulty, incorporating amide-containing substituents into the thiophene rings of single core thiophene-capped DPP derivatives could yield exciting results, as the advantages of having hydrogen-bonded π-conjugated systems based on these modified DPPs have not been explored thoroughly. This work reports on an efficient method for synthesizing such derivatives.  相似文献   

6.
7.
王斐然  蒋峰景 《化学进展》2021,33(3):462-470
随着可再生能源技术的不断发展,全钒液流电池作为具有较大发展前景的大规模储能装置,受到了国内外的广泛关注.离子导电膜作为全钒液流电池重要的组成部件之一,对于电池的性能、使用寿命和成本有着关键性的影响.根据国内外的研究报道,本综述详细介绍了全钒液流电池离子导电膜的科研与应用进展以及所面临的技术难题,为高性能、低成本、长寿命...  相似文献   

8.
电解液中金属离子会影响钒液流电池的电化学性能。本文采用循环伏安法和电化学阻抗谱研究了正极液中Mn2+浓度对V髨/V(Ⅳ)电对的氧化还原过程影响规律,发现Mn2+在正极液中没有发生副反应,但严重影响V髨/V(Ⅳ)的反应活性、电极反应可逆性、离子扩散与电荷转移反应等电化学性能。循环伏安测试结果表明Mn2+浓度为0.04-0.13 g.L-1时,V髨/V(Ⅳ)电对电极反应可逆性和反应活性较高,钒离子扩散系数由参照溶液中的8.89×10-7-1.098×10-6增大至1.302×10-6-1.800×10-6 cm2.s-1,提高了-60%;电化学阻抗测试结果表明Mn2+浓度为0-0.04 g.L-1时,V髨/V(Ⅳ)电对电极反应阻抗和界面阻抗均较参照溶液中的增加不明显,但当Mn2+浓度增至0.07 g.L-1时,上述阻抗值较参照溶液增大了25%-28%。基于二者结果,Mn2+对电极反应有不同程度的负面影响,但是适当的Mn2+浓度有利于钒离子的扩散。  相似文献   

9.
Aqueous organic redox flow batteries (AORFBs) have received considerable attention for large-scale energy storage. Quinone derivatives, such as 9,10-anthraquinone-2,7-disulphonic acid (2,7-AQDS), have been explored intensively owing to potentially low cost and swift reaction kinetics. However, the low solubility in pH-neutral electrolytes restricts their application to corrosive acidic or caustic systems. Herein, the single molecule redox-targeting reactions of 2,7-AQDS anolyte are presented to circumvent its solubility limit in pH-neutral electrolytes. Polyimide was employed as a low-cost high-capacity solid material to boost the capacity of 2,7-AQDS electrolyte to 97 Ah L−1. Through in situ FTIR spectroscopy, a hydrogen-bonding mediated reaction mechanism was disclosed. In conjunction with NaI as catholyte and nickel hexacyanoferrate as the catholyte capacity booster, a single-molecule redox-targeting reaction-based full cell with energy density up to 39 Wh L−1 was demonstrated.  相似文献   

10.
Flow batteries (FBs) have become a central topic recently, due to their promising prospect of addressing the issues of the random and intermittent nature of renewable energy sources. However, the successful industrialization of current FB systems is still limited by their relatively low energy densities and high cost. Research and development into novel aqueous FB systems with high energy density, high safety, and low cost are accordingly urgently required. Some novel aqueous FB systems have been explored in recent years to overcome issues of traditional FBs and vanadium FBs, in particular. Further modifications have also been made to improve their performance. In this review, appealing novel aqueous FB systems, such as zinc- and quinone-based FB systems, are reviewed, in terms of the operating principles, advantages, drawbacks, corresponding performance, and subsequent modifications. Moreover, recent investigations and advancements, and prospective research directions for novel aqueous FB systems, are summarized. Therefore, this review will provide guidance and perspectives for developing new aqueous FB systems.  相似文献   

11.
Hydrogen bonds can efficiently guide the self-assembly of organic materials, enabling to tune the properties of the aggregation processes. In the case of π-conjugated materials, several parameters such as temperature, concentration and solvent can be used to modify the aggregation state while tuning the optoelectronic properties. Chirality can be included within the impacting parameters due to the differences in molecular packing. Here, chiral and achiral thiophene-capped diketopyrrolopyrrole derivatives were designed and synthesized containing amide bonds, with the aim to study the interplay between chiral assemblies and their stabilization through hydrogen-bonding. Differences in aggregation properties were observed with spectroscopy and microscopy, and a contactless microwave-based technique was used to study their intrinsic charge carrier mobility. The positive role of hydrogen-bonding has been highlighted and the differences between chiral and achiral compounds have been elucidated.  相似文献   

12.
铂丝电极表面上电沉积一层金属钯,用阴离子交换隔膜材料封装,制得铂氢微型参比电极,工艺简单、稳定性高. 将该微型参比电极应用于全钒储能电池性能研究,可内置于电池多孔电极内部,监测电池正负极充放电性能. 结果显示,电池容量衰减主要归因于电解液中的活性物质V(IV)的逐渐减少及V(V)的积累导致正负极活性物质不平衡.  相似文献   

13.
Redox mediators (RMs) are considered an effective countermeasure to reduce the large polarization in lithium‐oxygen batteries. Nevertheless, achieving sufficient enhancement of the cyclability is limited by the trade‐offs of freely mobile RMs, which are beneficial for charge transport but also trigger the shuttling phenomenon. Here, we successfully decoupled the charge‐carrying redox property of RMs and shuttling phenomenon by anchoring the RMs in polymer form, where physical RM migration was replaced by charge transfer along polymer chains. Using PTMA (poly(2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐4‐yl methacrylate)) as a polymer model system based on the well‐known RM tetramethylpiperidinyloxyl (TEMPO), it is demonstrated that PTMA can function as stationary RM, preserving the redox activity of TEMPO. The efficiency of RM‐mediated Li2O2 decomposition remains remarkably stable without the consumption of oxidized RMs or degradation of the lithium anode, resulting in an improved performance of the lithium‐oxygen cell.  相似文献   

14.
由3-氯-1,2-丙二醇与4,4’-联吡啶通过简单的一步反应得到具有双电子特性的1,1’-双(2,3-二羟丙基)-(4,4’-联吡啶)二氯化物(DHPV2+Cl2-),其理论比容量为142. 56 m A·h/g.电化学测试结果表明,该材料有利于提升电池容量,且还原电位低至-0. 807 V(vs. Ag/Ag Cl).以Na Cl为支持电解质、DHPV2+Cl2-为负极活性物质、氮氧自由基哌啶醇(4-OH-TEMPO)为正极活性物质的全电池电压高达1. 562 V,且可在10~100m A/cm2的电流密度下稳定运行.采用25 m A/cm2的电流密度充放电,活性物质的有效利用率为70. 90%.循环100次后的放电容量保持率为98. 09%,每次循环的容量平均保持率为99. 93%,表现出较好的循环性能.  相似文献   

15.
Ion exchange membranes play a key role in all vanadium redox flow batteries (VRFBs). The mostly available commercial membrane for VRFBs is Nafion. However, its disadvantages, such as high cost and severe vanadium‐ion permeation, become obstacles for large‐scale energy storage. It is thus crucial to develop an efficient membrane with low permeability of vanadium ions and low cost to promote commercial applications of VRFBs. In this study, graphene oxide (GO) has been employed as an additive to the Nafion 212 matrix and a composite membrane named rN212/GO obtained. The thickness of rN212/GO has been reduced to only 41 μm (compared with 50 μm Nafion 212), which indicates directly lower cost. Meanwhile, rN212/GO shows lower permeability of vanadium ions and area‐specific resistance compared to the Nafion 212 membrane due to the abundant oxygen‐containing functional groups of GO additives. The VRFB cells with the rN212/GO membrane show higher Coulombic efficiencies and lower capacity decay than those of VRFB cells with the Nafion 212 membrane. Therefore, the cost‐effective rN212/GO composite membrane is a promising alternative to suppress migration of vanadium ions across the membrane to set up VRFB cells with better performances.  相似文献   

16.
Aqueous redox flow batteries (RFBs) are promising alternatives for large-scale energy storage. However, new organic redox-active molecules with good chemical stability and high solubility are still desired for high-performance aqueous RFBs due to their low crossover capability and high abundance. We report azobenzene-based molecules with hydrophilic groups as new active materials for aqueous RFBs by utilizing the reversible redox activity of azo groups. By rationally tailoring the molecular structure of azobenzene, the solubility is favorably improved from near zero to 2 M due to the highly charged asymmetric structure formed in alkaline environment. DFT simulations suggest that the concentrated solution stability can be enhanced by adding hydrotropic agent to form intermolecular hydrogen bonds. The demonstrated RFB exhibits long cycling stability with a capacity retention of 99.95 % per cycle over 500 cycles. It presents a viable chemical design route towards advanced aqueous RFBs.  相似文献   

17.
Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of ~50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.  相似文献   

18.
Organic electrode materials hold great potential for fabricating sustainable energy storage systems, however, the development of organic redox‐active moieties for rechargeable aqueous zinc‐ion batteries is still at an early stage. Here, we report a bio‐inspired riboflavin‐based aqueous zinc‐ion battery utilizing an isoalloxazine ring as the redox center for the first time. This battery exhibits a high capacity of 145.5 mAh g?1 at 0.01 A g?1 and a long‐life stability of 3000 cycles at 5 A g?1. We demonstrate that isoalloxazine moieties are active centers for reversible zinc‐ion storage by using optical and photoelectron spectroscopies as well as theoretical calculations. Through molecule‐structure tailoring of riboflavin, the obtained alloxazine and lumazine molecules exhibit much higher theoretical capacities of 250.3 and 326.6 mAh g?1, respectively. Our work offers an effective redox‐active moiety for aqueous zinc batteries and will enrich the valuable material pool for electrode design.  相似文献   

19.
The development of various redox‐flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox‐flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.  相似文献   

20.
Incorporation of tellurium into polycyclic compounds may endow them with unique chemical and optoelectronic properties which are not observed in their lighter chalcogen analogues. Herein, a telluropyran-containing polycyclic compound ( T1 ) synthesized through a ring-expansion reaction from the corresponding tellurophene analogue can be reversibly oxidized into halogen adducts T1•X2 (X=Cl, Br, I) with the formation of two Te−X bonds. Their chemical structures have been verified by two-dimensional 1H-1H correlation spectroscopy and single crystal X-ray diffraction analysis. The halogen oxidations of T1 and the reverse thermal eliminations as well as the halogen exchange in halogen adducts T1•X2 have been systematically investigated and compared by UV-vis absorption titration, electrochemical measurements, thermogravimetric analysis, and density functional calculations (DFT). The oxidation of Te(II) in T1 to Te(IV) in T1•X2 results in the switch from aromaticity to nonaromaticity for the six-membered telluropyran ring, as revealed by nucleus-independent chemical shift calculations. It is also found that the halides in the halogen adducts can be exchanged by lighter ones, but not vice versa. The stabilities of the oxidized products are in the order of T1•Cl2 > T1•Br2 > T1•I2 , which are consistent with the calculated rate constants and energy barriers of the elimination reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号