首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, rapid and high-throughput fluorescent polarization immunoassay (FPIA) for simultaneous determination of organophosphorus pesticides (OPs) using a broad-specificity monoclonal antibody was developed. The effects of tracer structure, tracer concentration, antibody dilution, methanol content and matrix effect on FPIA performance were studied. The FPIA can detect 5 OPs simultaneously with a limit of detection below 10 ng mL(-1). The time required for the equilibrium of antibody-antigen interaction was less than 10 min. The recovery from spiked vegetable and environmental samples ranged from 71.3% to 126.8%, with the coefficient of variations ranging from 3.5% to 14.5%. The developed FPIA was applied to samples, followed by confirmation with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. The developed FPIA demonstrated good accuracy and reproducibility, and is suitable for rapid and high-throughput screening for OP contamination with high-efficiency and low cost.  相似文献   

2.
高效液相色谱-串联质谱法测定烟草中有机磷农药的残留量   总被引:25,自引:1,他引:25  
刘莹雯  丁时超  杜文  银董红  刘建福 《色谱》2006,24(2):174-176
建立了一种基于液相色谱-串联质谱法(LC-MS/MS)定量分析微量有机磷农药残留的方法,并应用于烟草中农药残留物的定量检测。采用乙腈超声提取烟草中的有机磷农药残留,以甲醇-水(含0.1%乙酸铵)(体积比为95∶5)为流动相,经高效液相色谱分离,以串联质谱在多反应监测(MRM)模式下测定,在2.5 min内完成了甲胺磷、乙酰甲胺磷、乐果、敌百虫、毒死蜱5种常用有机磷农药的定量分析。5种农药在1~200 μg/L内的线性关系良好(r>0.998),平均回收率为77%~104%,检出限为1.0~5.0 μg/kg。  相似文献   

3.
AuNPs possess oxygen-containing functional groups and strong complexation reaction with Yb3+. While oxygen-containing thiophosphate in the OPs molecule can combine with Yb3+ as a cross-linking molecule to produce insoluble yetterbium phosphate, resulting in the aggregation of AuNPs and great decrease in ultraviolet absorbance strength at 520 nm by ultraviolet visible (UV-vis) spectrophotometer.  相似文献   

4.
An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kinds of OPs are reactived by a reactivator, the catalytic activity of AChEs can be recovered with different activation efficiency because of the different phosphorylation structures formed in the inhibited AChEs. Accordingly, the reactived AChEs can catalyze the hydrolysis of acetylthiocholine to generate thiocholine product in different degrees, which will result in different catalytic growth of AuNPs and further form distinct orientational response of LCs. Based on such a reactivation mechanism, the AChE LC biosensor with a simple, rapid and visual procedure achieves an obvious identification of three OPs pesticides, methamidophos, trichlorfon and paraoxon, by using a pralidoxime reactivator.  相似文献   

5.
A simple, rapid, and high-sensitivity assay was developed to detect the multiresidue of organophosphorus pesticides (OPs) in the environment and food. Two separate generic haptens (Hapten A and B) with same O,O-dimethyl phosphorothioate group and aromatic ring and different spacer arms were synthesized and conjugated to bovine serum albumin (BSA) for immunogens and to ovalbumin (OVA) for coating antigens to study the effect of hapten and coating antigen heterology on immunoassay sensitivity. A broad-spectrum monoclonal antibody (MAb) was produced and a competitive ELISA developed using Hapten B-BSA as the immunogen and Hapten A-OVA as the coating antigen for the multiresidue determination of OPs, including parathionmethyl, fenitrothion, fenthion, chlorthion, and fenchlorphos. Several assay conditions, including organic solvent, pH, ionic strength, and incubation time, were studied sequentially to optimize the immunoassay. Using the optimal assay, 50% inhibition concentration values were estimated to be 34.5, 47.5, 79.8, 125.2, and 373.1 ng/mL for parathionmethyl, fenitrothion, fenthion, chlorthion, and fenchlorphos, respectively. The results indicated that the MAb showed specificity to all the above five OPs, and the assay could be developed for multiresidue determinations.  相似文献   

6.
Organophosphates (OPs) have been widely used as pesticides,insecticides or even chemical warfare agents.Acetylcholinesterase (ACHE) inhibition has been employed to develop verious assay methods for detection of pesticides with the advantages of low cost,simple procedure and quick assay time.The study of acetylcholinesterase (ACHE) activity and OPs inhibition in the solution containing organic solvent is extremely important owing to poor solubility of Ops in water and a higher solubility in organic solvents.  相似文献   

7.
Wang K  Li HN  Wu J  Ju C  Yan JJ  Liu Q  Qiu B 《The Analyst》2011,136(16):3349-3354
This work describes a highly sensitive and rapid amperometric biosensor for organophosphate compounds (OPs) based on immobilization of acetylcholinesterase (AChE) on a novel TiO(2)-decorated graphene (TiO(2)-G) nanohybrid, which was constructed by in situ growth of TiO(2) nanoparticles (NPs) on the graphene sheet. The well-dispersed TiO(2) NPs eliminated the restacking of TiO(2)-G nanohybrids. Due to the integrating of TiO(2)-G nanohybrids, the as-prepared biosensor showed high affinity to acetylthiocholine (ATCl) with a Michaelis-Menten constant (K(m)) value of 0.22 mM, and rapid inhibition time (3 min). Further, based on the inhibition of OPs on the enzymatic activity of the immobilized AChE, and using carbaryl as a model compound, the inhibition of carbaryl was proportional to its concentration ranging from 0.001 to 0.015 and 0.015 to 2 μg mL(-1) with a detection limit of 0.3 ng mL(-1) (S/N = 3). The developed biosensor exhibited a good performance for organophosphate pesticide detection, including good reproducibility and acceptable stability, which provided a new and promising tool for the analysis of enzyme inhibitors.  相似文献   

8.
Organophosphates (OPs) constitute many toxic agrochemicals and warfare and can undergo a wide spectrum of mechanisms, some which are fairly unexplored. In this sense, concise mechanistic elucidation stands out as a strategic tool for achieving efficient detoxification and for monitoring processes. Particularly intriguing is the effect of substituting the oxygen atom of the phosphoryl moiety (P=O) in OPs with a sulfur atom to give the thio-derived OPs (i.e., OTPs, P=S). In general, imidazole (IMZ) reacts very efficiently with OPs by targeting the phosphorus atom, although herein we evidence a thio-driven shift with OTPs: IMZ undergoes unusual nucleophilic attack at the aliphatic carbon atom of methyl parathion. Alkylation of IMZ under mild conditions (aqueous weakly basic medium) is also novel and should be applicable to other novel IMZ-based architectures, and thereby, it can be a great ally for organic synthesis. Overall, a broader understanding of the mechanistic trend involved in such highly toxic agents is provided.  相似文献   

9.
A microbial biosensor consisting of a dissolved oxygen electrode modified with the genetically engineered PNP-degrader Moraxella sp. displaying organophosphorus hydrolase (OPH) on the cell surface for sensitive, selective, rapid and direct determination of p-nitrophenyl (PNP)-substituted organophosphates (OPs) is reported. Surface-expressed OPH works in tandem with the PNP oxidation machinery of the Moraxella sp. to degrade PNP-substituted OPs and PNP simultaneously while consuming oxygen, that is proportional to the analyte concentration. The optimum performance was obtained by electrodes constructed using 0.35 mg dry weight of cell and operating at pH 7.5. Operating at optimum conditions the biosensor was able to measure as low as 0.1 microM (27.5 ppb) of paraoxon and had excellent selectivity against triazines, carbamates and OPs without PNP substitutent. The biosensor was stable for a week when stored at 4 degrees C. The applicability of the biosensor to measure OPs in lake water was demonstrated.  相似文献   

10.
In order to improve the sensitivity of assays for inhibitors of the enzyme acetylcholine esterase (AChE), an effective method was developed for the conversion of the organophosphate pesticides (OPs) diazinon, malathion, chlorpyrifos, azinphos-methyl and phorate into more toxic inhibitors. This was accomplished by converting them from the thio form into their oxo form using the enzyme myeloperoxidase. The oxo forms, which are the only products of conversion, were determined by AChE bioassays, using either the free enzyme, or a flow injection analysis manifold with immobilized AChE and spectrophotometric detection. All modified OPs exhibited inhibitory power at ppb levels and within 10 min. The method is considered to represent an excellent means for improving the sensitivity of assays for determination of OPs.  相似文献   

11.
The residues of organophosphorus pesticide(OPs)on fruits and vegetables pose a threat to human health,so it is very meaningful to explore simple and fast detect methods for OPs residual.In this work,nickel ferrite/nickel oxide nanoparticles co-loaded three-dimensional reduced graphene oxide(3DRGONiFe2O4/NiO NPs),as a new low cost nanocomposite,was prepared.Based on its high performance mimetic peroxidase activity,a colorimetric method for the detection of OPs has been developed.Dichlorvos was chosen as model compounds to evaluate the detection performance.The detection linear range for dichlorvos is from 50μg/mL to 2.5×10^4μg/mL with a detection limit of 10μg/mL.Furthermore,a test paper can be developed based on the 3 DRGO-NiFe2O4/NiO NPs for visual detection of dichlorvos,and the image information of the paper sensor can be converted into digital signal and quantitative detection by a smartphone.Notably,this method can also be used to detect dichlorvos in real samples,including vegetables and fruits.Thus,the developed naked assay holds great potential in simple,inexpensive and rapid detection of OPs in fruit and vegetable samples.  相似文献   

12.
With the growing demand for measurements of organophosphate (OP) pesticide use in agriculture along with the potential threat of OP‐based chemical warfare agents, there is a need for new devices or surfaces that can quickly degrade OPs into less toxic substances in a variety of environments. Using surface‐initiated atom transfer radical polymerization and post‐polymerization synthesis, we prepared a series of quaternary ammonium fluoride‐based polymer brushes designed to absorb and degrade OPs. Specifically, a polymer brush was formed using 2‐dimethylamino‐ethyl methacrylate (DMAEMA) as monomer, which, following post‐polymerization quaternization of the tertiary amine with alkylating agents and fluoride ion exchange, afforded the OP‐reactive polymer surfaces. Poly(DMAEMA) brushes were grown to thicknesses of ~100 nm on silicon wafers and glass slides and characterized by ellipsometry, atomic force microscopy, and Raman spectroscopy. Quaternization and subsequent ion exchange of the brushes were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy, respectively. The interaction of the brushes with OPs was evaluated using the OP‐based pesticide coumaphos, through the presence of the highly fluorescent degradation product chlorferon; analyzed qualitatively via fluorescence microscopy; and confirmed via nuclear magnetic resonance and mass spectrometry. We found that the fluoride form of the brush reliably degraded coumaphos deposited via controlled solution‐based applications and aerosol applications (electrohydrodynamic jetting) and from microcontact printing of the dried solid directly onto the brush. No degradation was seen for coumaphos deposited on poly(DMAEMA) or the iodide form of the quaternized brush. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
固相微萃取-气相色谱法测定红葡萄酒中残留的有机磷农药   总被引:22,自引:0,他引:22  
胡媛  刘文民  周艳明  关亚风 《色谱》2006,24(3):290-293
采用溶胶-凝胶包埋技术制备了耐高温固相微萃取头(SPME),用该萃取头与气相色谱-热离子化检测器联用对红葡萄酒中的12种有机磷农药残留进行了测定。实验中对搅拌速度、萃取时间、盐浓度等条件进行了优化。结果表明,在样品用量25 mL,搅拌速度1250 r/min,盐浓度 150 g/L,萃取时间30 min的条件下,绝大多数组分峰面积的相对标准偏差(RSD)在5%以下,各种有机磷农药的检测限为5 ng/L到0.38 μg/L。  相似文献   

14.
A qualitative method for the screening of organophosphorus pesticides (OPs) that could present in different types of vegetables has been established and validated. A typical multi-residue extraction procedure of OPs using ethyl acetate and sodium sulphate has been applied. No clean-up was required after extraction, and concentrated extracts were analysed by gas chromatography with pulsed-flame photometric detection (GC-PFPD). Confirmation of compound identities was performed by gas chromatography with mass spectrometric detection (GC-MSD) in the electron impact (EI) mode with full scan acquisition. Retention time locking (RTL) software was used in order to improve the method capability of identification and confirmation. Spiked samples at pesticide concentrations equal to the maximum residue level (MRL) were used to check chromatographic performance and for validation studies. The proposed method allows a rapid and accurate identification of the studied OPs until the ng ml(-1) range for those whose use is forbidden, and above their MRL concentration for the rest.  相似文献   

15.
A simple, rapid, sensitive and reproducible spectrophotometry for determination of ultra trace organophosphorus pesticides (OPs) with liquid core waveguide light intensity technique is presented. OPs were degraded into phosphate with UV light, potassium peroxydisulphate as oxidant and nanosized titanium dioxide as catalyst. Under the optimum selected conditions, linear light intensity response was obtained in the range of 2.0 x 10(-11) to 8.0 x 10(-10)g mL(-1) phosphate, and the limit of detection (LOD) 6.7 x 10(-12)g mL(-1) was achieved. Both the low limit of linear range and the LOD of the proposed method were lower over 1000-fold than that of classical spectrophotometry. The proposed method was applied to the determination of ultra trace OPs in vegetables and fruits samples.  相似文献   

16.
p-Nitrophenyl organophosphates (OPs) including paraoxon, parathion and methyl parathion, etc, are highly poisonous OPs, for which sensitive and rapid detection method is most needed. In this work, an ultrasensitive electrochemical sensor for the determination of p-nitrophenyl OPs was developed based on ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). The electrochemical behavior and reaction mechanism of p-nitrophenyl OPs at OMCs/GCE was elaborated by taking paraoxon as an example. Experimental conditions such as buffer pH, preconcentration potential and time were optimized. By using differential pulse voltammetry, the current response of the sensor at −0.085 V was linear with concentration within 0.01–1.00 μM and 1.00–20 μM paraoxon. Similar linear ranges of 0.015–0.5 μM and 0.5–10 μM were found for parathion, and 0.01–0.5 μM and 0.5–10 μM for methyl parathion. The low limits of detection were evaluated to be 1.9 nM for paraoxon, 3.4 nM for parathion and 2.1 nM for methyl parathion (S/N = 3). Common interfering species had no interference to the detection of p-nitrophenyl OPs. The sensor can be applicable to real samples measurement. Therefore, a simple, sensitive, reproducible and cost-effective electrochemical sensor was proposed for the fast direct determination of trace p-nitrophenyl OPs at low potential without deoxygenization.  相似文献   

17.
18.
有机磷农药酶生物传感器研究进展   总被引:7,自引:0,他引:7  
王丽红  张林  陈欢林 《化学进展》2006,18(4):440-452
酶生物传感器(EBS)以简单、廉价、易于微型化等优势成了有机磷农药(OPs)传统分析方法的最佳替代品。本文从识别OPs的酶及识别机理、电化学EBS、酶的固定化技术、高分子材料的酶固定载体不同角度综述了有机磷农药酶生物传感器研究近况,并重点介绍了一次性丝网印刷酶电极。  相似文献   

19.
Makino K  Itoh Y  Teshima D  Oishi R 《Electrophoresis》2004,25(10-11):1488-1495
Therapeutic drug monitoring of anti-inflammatory drugs is necessary for the identification of the agents that cause toxic events and for the decision on the treatment for intoxication. Recently, capillary electrophoresis (CE) has been developed for the simple and rapid analyses of a variety of chemical agents. Micellar electrokinetic chromatography (MEKC) can separate acidic, neutral and basic anti-inflammatory drugs in serum. Furthermore, serum samples are directly applied to the CE system without any pretreatments, and some anti-inflammatory drugs can be separated from serum albumin in the MEKC analysis. On the other hand, capillary zone electrophoresis (CZE) enables us to determine a few microg/mL levels of acidic anti-inflammatory drugs with simple running buffer and stacking technique. A rapid and simultaneous determination of several analgesic anti-inflammatory agents, including ibuprofen, acetaminophen, indomethacin, and salicylic acid in human serum has been developed by using CZE. Therefore, the CZE and MEKC analysis may become a potentially useful alternative to high-performance liquid chromatography (HPLC) and fluorescence polarization immunoassay (FPIA) for therapeutic drug monitoring, particularly in serum of patients suffering from intoxication by overdosage of nonsteroidal anti-inflammatory agents.  相似文献   

20.
Wu S  Lan X  Cui L  Zhang L  Tao S  Wang H  Han M  Liu Z  Meng C 《Analytica chimica acta》2011,(2):170-176
Electrochemical reduced β-cyclodextrin dispersed graphene (β-CD-graphene) was developed as a sorbent for the preconcentration and electrochemical sensing of methyl parathion (MP), a representative nitroaromatic organophosphate pesticide with good redox activity. Benefited from the ultra-large surface area, large delocalized π-electron system and the superconductivity of β-CD-graphene, large amount of MP could be extracted on β-CD-graphene modified electrode via strong π–π interaction and exhibited fast accumulation and electron transfer rate. Combined with differential pulse voltammetric analysis, the sensor shows ultra-high sensitivity, good selectivity and fast response. The limit of detection of 0.05 ppb is more than 10 times lower than those obtained from other sorbent based sensors. The method may open up a new possibility for the widespread use of electrochemical sensors for monitoring of ultra-trace OPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号