首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
水通道蛋白(aquaporin, AQP)是一种对水分子具有高选择性和渗透性的跨膜蛋白。近几年来,含AQP的仿生膜有望克服传统膜材料通量与截留率之间的上限平衡问题,因此,它在海水淡化和水处理领域的应用吸引了越来越多研究者的关注。本文对含AQP仿生渗透膜的制备方法及性能进行了综述,分别介绍了含AQP双层膜结构仿生膜和封装含AQP囊泡的仿生膜这两大类膜结构所对应的不同制备方法。同时,对含AQP仿生膜中膜结构的组成方式、装载AQP蛋白的囊泡材料、制膜过程中的操作条件等因素对膜结构和性能的影响进行了探究讨论。综合文中所述不同膜的膜性能,得出现阶段含AQP仿生膜还存在着膜面积小、膜机械强度不够高、AQP装载量较低及易受外界因素影响的缺陷,并提出在克服膜缺陷的同时寻找其他仿生水通道及离子通道的思路,使未来仿生膜获得更宽阔的发展道路。  相似文献   

2.
3.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   

4.
Artificial water channels (AWCs) that selectively transport water and reject ions through bilayer membranes have potential to act as synthetic Aquaporins (AQPs). AWCs can have a similar osmotic permeability, better stability, with simpler manufacture on a larger-scale and have higher functional density and surface permeability when inserted into the membrane. Here, we report the screening of combinatorial libraries of symmetrical and unsymmetrical rim-functionalized PAs A – D that are able to transport ca. 107–108 water molecules/s/channel, which is within 1 order of magnitude of AQPs’ and show total ion and proton rejection. Among the four channels, C and D are 3–4 times more water permeable than A and B when inserted in bilayer membranes. The binary combinations of A – D with different molar ratios could be expressed as an independent (linear ABA ), a recessive (inhibition AB , AC , DB , ACA ), or a dominant (amplification, DBD ) behavior of the water net permeation events.  相似文献   

5.
6.
7.
The natural KcsA K+ channel, one of the best‐characterized biological pore structures, conducts K+ cations at high rates while excluding Na+ cations. The KcsA K+ channel is of primordial inspiration for the design of artificial channels. Important progress in improving conduction activity and K+/Na+ selectivity has been achieved with artificial ion‐channel systems. However, simple artificial systems exhibiting K+/Na+ selectivity and mimicking the biofunctions of the KcsA K+ channel are unknown. Herein, an artificial ion channel formed by H‐bonded stacks of squalyl crown ethers, in which K+ conduction is highly preferred to Na+ conduction, is reported. The K+‐channel behavior is interpreted as arising from discreet stacks of dimers resulting in the formation of oligomeric channels, in which transport of cations occurs through macrocycles mixed with dimeric carriers undergoing dynamic exchange within the bilayer membrane. The present highly K+‐selective macrocyclic channel can be regarded as a biomimetic alternative to the KcsA channel.  相似文献   

8.
蒋成浩  冯霄  王博 《化学学报》2020,78(6):466-477
日益严重的水资源短缺和水资源污染问题是全球面临的挑战,大力发展海水淡化和水处理技术是缓解该问题的有效途径.近年来,能耗低、环境友好的膜分离技术被广泛用于海水淡化和水处理领域.共价有机框架(Covalentorganic framework, COF)膜因其具有大小可控、化学性质可调的孔道,成为潜在的高性能膜分离材料.本综述详细介绍了COF膜合成方法学的研究进展,概述了COF膜在海水淡化和水处理领域的研究,并展望了其在海水淡化和水处理领域的前景和面临的挑战.  相似文献   

9.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

10.
双分子层膜人工离子通道的合成   总被引:1,自引:0,他引:1  
包春燕  贾慧娟  刘涛  汪奕  彭伟  朱麟勇 《化学进展》2012,24(7):1337-1345
离子通道(ion channels)是由细胞膜上的一类特殊亲水性蛋白质构成的微孔道,它的主要功能就是传输离子跨膜,相当于细胞的通气孔。其结构与功能的异常往往引起上千种疾病,统称为离子通道病,这种疾病目前不能靠常规的仪器来检查,在确诊上有一定的难度。因此通过化学手段合成人工离子通道来模拟生物体内细胞膜上的离子通道的结构与功能,对于深入研究这些疾病并发现特异性治疗药物均具有十分重要的理论和实际意义。本论文就近三十年来人们设计合成的不同种类人工离子通道进行了综述,介绍了其研究进展并总结了各种人工离子通道的分子结构设计以及在膜上传输离子行为,展望了其在模拟天然离子通道功能的同时在生物医药以及生命科学等领域的应用前景。  相似文献   

11.
We designed multiblock amphiphiles AmF and AmH , which consist of perfluorinated and non-fluorinated hydrophobic units, respectively. Absorption spectroscopy revealed that both amphiphiles are molecularly dispersed in organic solvent, while they form aggregates under aqueous conditions. Furthermore, we investigated whether AmF and AmH can be incorporated into DOPC lipid bilayer membranes, and found that the maximum concentration of AmF that can be incorporated into DOPC lipid bilayer membranes is 43 times higher than that of AmH .  相似文献   

12.
Self‐assembled alkyl‐ureido‐benzo‐15‐crown‐5‐ethers are selective ionophores for K+ cations, which are preferred to Na+ cations. The transport mechanism is determined by the optimal coordination rather than classical dimensional compatibility between the crown ether hole and the cation diameter. Herein, we demonstrate that systematic changes of the structure lead to unexpected modifications in the cation‐transport activity and suffice to produce adaptive selection. We show that the main contribution to performance arises from optimal constraints on the conformational freedom, which are determined by the binding macrocycles, the nature of the hydrogen‐bonding groups, and the hydrophobic tails. Simple changes to the flexible 15‐crown‐5‐ether lead to selective carriers for Na+. Hydrophobic stabilization of the channels through mutual interactions between lipids and variable hydrophobic tails appears to be an important cause of increased activity. Oppositely, restricted translocation is achieved when constrained hydrogen‐bonded macrocyclic relays are less dynamic in a pore superstructure.  相似文献   

13.
受水通道蛋白(AQP)结构与功能启发,含有生物水通道或人工水通道(AWC)的仿生膜近年来取得了显著进展.借鉴AQP的传输特性,所制备的AWC获得了高度的选择性及水快速运输能力.通过对AQP的结构原型进行分析,对标AWC中H2O分子选择性和渗透特性,尝试提出了"门控效应"、"润湿效应"和"排队效应"3种效应,并对现有嵌入...  相似文献   

14.
Membrane technology is the dominant process in water treatment. However, the operation cost of membranes cannot be decreased unless the amount of fouling, the “Achilles heel” of membranes, and energy consumed are cut. The high energy requirements in commercial nanofiltration, reverse osmosis and forward osmosis technologies lead researchers to develop new membrane designs having high flux values with high salt rejection values. The purpose of this review is to present the inadequacies of the membrane processes by considering studies related to fouling and energy minimization. In this respect, lipid bilayers, block copolymers, aquaporin Z proteins and aligned carbon nanotubes can be the base to build biomimetic membranes. Such studies are summarized due to their remarkable properties in fouling control. Furthermore, the review describes the membrane design strategies and points the limitations hindering commercialization. Additionally, it is hoped that this review will trigger further needed studies.  相似文献   

15.
Graphene oxide (GO) nanosheets were engineered to be assembled into laminar structures having fast and selective transport channels for gas separation. With molecular‐sieving interlayer spaces and straight diffusion pathways, the GO laminates endowed as‐prepared membranes with excellent preferential CO2 permeation performance (CO2 permeability: 100 Barrer, CO2/N2 selectivity: 91) and extraordinary operational stability (>6000 min), which are attractive for implementation of practical CO2 capture.  相似文献   

16.
Polymeric membranes are an energy‐efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described.  相似文献   

17.
电容去离子技术(Capacitive Deionization,CDI)可以通过断电或电极反接方式使盐离子脱附,达到电极再生的目的,实现电极的可循环利用,其在海水淡化处理技术中具有独特的优势,逐渐成为一种缓和淡水资源紧缺和水污染的极具前景的技术手段。近年来,CDI处理技术正在向电极高效、无二次污染方向转变,未来将进一步聚焦碳基电极材料功能化(碳材料,钛碳化物MXenes,掺杂改性石墨烯材料)、装置和工艺设计优化等重要方向。为深入研究CDI海水淡化技术机理,进一步探索CDI方法在实际应用中的潜力,分别对CDI的脱盐机理、电极材料、装置和工艺设计对电吸附效率和性能的研究进展进行了总结,回顾CDI脱盐效果与电极材料、CDI电池装置设计等因素之间的密切关系,并对CDI技术在海水淡化中的研究发展提出展望。  相似文献   

18.
19.
Biomacromolecular nanotubes play important physiological roles in transmembrane ion/molecule channeling, intracellular transport, and inter‐cellular communications. While genetically encoded protein nanotubes are prevalent in vivo, the in vitro construction of biomimetic DNA nanotubes has attracted intense interest with the rise of structural DNA nanotechnology. The abiotic use of DNA assembly provides a powerful bottom‐up approach for the rational construction of complex materials with arbitrary size and shape at the nanoscale. More specifically, a typical DNA nanotube can be assembled either with parallel‐aligned DNA duplexes or by closing DNA tile lattices. These artificial DNA nanotubes can be tailored and site‐specifically modified to realize biomimetic functions including ionic or molecular channeling, bioreactors, drug delivery, and biomolecular sensing. In this Minireview, we aim to summarize recent advances in design strategies, including the characterization and applications of biomimetic DNA nanotubes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号