首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As a H2O2-dependent bioluminescent substrate, tetrabromo-1,4-benzoquinone (TBBQ) was first isolated from acorn worm. The mechanism of chemiluminescence (CL) corresponding to the bioluminescence (BL) of acorn worm is largely unknown, let alone the mechanism of BL. In this article, we firstly studied the chemical and physical processes, and mechanism of H2O2-dependent CL from TBBQ by theoretical and experimental methods. The research results indicate: the CL process is initiated by a nucleophilic substitution reaction, which leads to the formation of an anionic dioxetane through five consecutive reactions; the anionic dioxetane decomposes to the first singlet excited state (S1) via a conical interaction of the potential energy surfaces (PESs) between the ground (S0) and S1 state; the anionic S1-state changes to its neutral form by a proton transfer from the solvent and this neutral product is assigned as the actual luminophore. Moreover, the experimental detection of CL, .OH and the identifications of 2,3-dibromo maleic acid and 2-bromo malonic acid as the major final products provide direct evidence of the theoretically suggested mechanism. Finally, this study proves that the activity of the H2O2-dependent CL from TBBQ is significantly lower than the one from tetrachloro-1,4-benzoquinone (TCBQ), which is caused by the weaker electron withdrawing effect and the stronger heavy atomic effect of bromine.  相似文献   

2.
The reaction mechanism of 1,2×n‐deoxydehydration (DODH; n=1, 2, 3 …) reactions with 1‐butanol as a reductant in the presence of methyltrioxorhenium(VII) catalyst has been investigated by DFT. The reduced rhenium compound, methyloxodihydroxyrhenium(V), serves as the catalytically relevant species in both allylic alcohol isomerization and subsequent DODH processes. Compared with three‐step pathway A, involving [1,3]‐transposition of allylic alcohols, direct two‐step pathway B is an alternative option with lower activation barriers. The rate‐limiting step of the DODH reaction is the first hydrogen transfer in methyltrioxorhenium(VII) reduction. Moreover, the increase in the distance between two hydroxyl groups in direct 1,2×n‐DODH reactions for C4 and C6 diols results in a higher barrier height.  相似文献   

3.
Biginelli reactions have been monitored by direct infusion electrospray ionization mass spectrometry (ESI‐MS) and key cationic intermediates involved in this three‐component reaction have been intercepted and further characterized by tandem MS experiments (ESI‐MS/MS). Density functional theory calculations were also used to investigate the feasibility of the major competing mechanisms proposed for the Biginelli reaction. The experimental and theoretical results were found to corroborate the iminium mechanism proposed by Folkers and Johnson, whereas no intermediates directly associated with either the more energy demanding Knoevenagel or enamine mechanisms could be intercepted.  相似文献   

4.
甲醛不仅用作工业化学品,也是调节人体生理活动的必要代谢产物。但是,人体从外环境过量的摄入甲醛或者内环境甲醛代谢的不平衡,会造成器官癌变和老年痴呆等重大疾病。有机小分子荧光探针以其高灵敏度、高选择性、可视化和原位检测等特点,使其在生物体内外甲醛检测和生物成像领域具有应用优势,同时也为实际产品中甲醛的痕量检测提供一种新方法。近五年来,甲醛荧光探针得到了快速的发展。本文主要从甲醛荧光探针的反应类型、生物体中甲醛的荧光成像以及在实际样品(商品)检测应用三个方面,介绍有机小分子荧光探针对甲醛的识别和应用。最后总结指出,不同类型的有机小分子荧光探针在不断开发、结构优化和光学性能提升及满足辅助生物医学方向长期性研究的同时,也能拓展应用范围,达到短期内对实际产品中甲醛快速(原位)检测的目的。  相似文献   

5.
The mechanism of the ruthenium–N‐heterocyclic‐carbene‐catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study with dispersion‐corrected density functional theory (DFT/M06). The Hammett study indicated that a small positive charge builds‐up at the benzylic position in the transition state of the turnover‐limiting step. The kinetic isotope effect was determined to be 2.29(±0.15), which suggests that the breakage of the C? H bond is not the rate‐limiting step, but that it is one of several slow steps in the catalytic cycle. Rapid scrambling of hydrogen and deuterium at the α position of the alcohol was observed with deuterium‐labeled substrates, which implies that the catalytically active species is a ruthenium dihydride. The experimental results were supported by the characterization of a plausible catalytic cycle by using DFT/M06. Both cis‐dihydride and trans‐dihydride intermediates were considered, but when the theoretical turnover frequencies (TOFs) were derived directly from the calculated DFT/M06 energies, we found that only the trans‐dihydride pathway was in agreement with the experimentally determined TOFs.  相似文献   

6.
The mechanism of the gold‐catalyzed intermolecular cycloaddition between allenamides and 1,3‐dienes has been explored by means of a combined experimental and computational approach. The formation of the major [4+2] cycloaddition products can be explained by invoking different pathways, the preferred ones being determined by the nature of the diene (electron neutral vs. electron rich) and the type of the gold catalyst (AuCl vs. [IPrAu]+, IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazole‐2‐ylidene). Therefore, in reactions catalyzed by AuCl, electron‐neutral dienes favor a concerted [4+3] cycloaddition followed by a ring contraction event, whereas electron‐rich dienes prefer a stepwise cationic pathway to give the same type of formal [4+2] products. On the other hand, the theoretical data suggest that by using a cationic gold catalyst, such as [IPrAuCl]/AgSbF6, the mechanism involves a direct [4+2] cycloaddition between the diene and the gold‐activated allenamide. The theoretical data are also consistent with the observed regioselectivity as well as with the high selectivity towards the formation of the enamide products with a Z configuration. Finally, our data also explain the formation of the minor [2+2] products that are obtained in certain cases.  相似文献   

7.
The molybdate‐catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para‐substituted benzylic alcohols was carried out. Density‐functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH2OH at 175 °C. Under these conditions, PhCH2OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic‐labelling experiments (using PhCH2OD and PhCD2OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study.  相似文献   

8.
Chemiluminescent probes are being considered as a convenient option for optical imaging. Several strategies were reported to increase the probe chemiluminescence efficiency. In this study, a series of chemiluminescent cassettes based on adamantyl stabilized 1,2-dioxetanes (“Schaap's dioxetane”) linked to a fluorophore (BODIPY or dicyanoisophorone fluorophore) by a conjugated linker have been synthetized. Their chemiluminescent decomposition and the photoluminescence properties of their respective emissive species were investigated.  相似文献   

9.
The stability of monomeric formaldehyde encapsulated in the lithium-decorated metal-organic framework Li-MOF-5 was investigated by means of density functional calculations with the M06-L functional and the 6-31G(d,p) basis set. To assess the efficiency of Li-MOF-5 for formaldehyde preservation, we consider the reaction kinetics and the thermodynamic equilibrium between formaldehyde and its trimerized product, 1,3,5-trioxane. We propose that trimerization of encapsulated formaldehyde takes place in a single reaction step with an activation energy of 34.5 kcal mol(-1). This is 17.2 kcal mol(-1) higher than the corresponding activation energy in the bare system. In addition, the reaction energy of the system studied herein is endothermic by 6.1 kcal mol(-1) and the Gibbs free energy (ΔG) of the reaction becomes positive (11.0 kcal mol(-1)). Consequently, the predicted reverse rate for the trimerization reaction in the Li-MOF-5 is significantly faster than the forward rate. The calculations show that the oligomerization of formaldehyde in Li-MOF-5 is a reversible reaction, suggesting that such a zeolite might be a good candidate material for preserving formaldehyde in its monomeric form.  相似文献   

10.
The thiolate‐catalyzed Tishchenko reaction has shown high chemoselectivity for the formation of double aromatic‐substituted esters. In the present study, the detailed reaction mechanism and, in particular, the origin of the observed high chemoselectivity, have been studied with DFT calculations. The catalytic cycle mainly consisted of three steps: 1,2‐addition, hydride transfer, and acyl transfer steps. The calculation results reproduce the experimental observations that 4‐chlorobenzaldehyde acts as the hydrogen donor (carbonyl part in the ester product), while 2‐methoxybenzaldehyde acts as the hydrogen acceptor (alcohol part in the product). The two main factors are responsible for such chemoselectivity: 1) in the rate‐determining hydride transfer step, the para‐chloride substituent facilitates the hydride‐donating process by weakening the steric hindrance, and 2) the ortho‐methoxy substituent facilitates the hydride‐accepting process by stabilizing the magnesium center (by compensating for the electron deficiency).  相似文献   

11.
Born–Oppenheimer molecular dynamics (BOMD) and periodic density functional theory (DFT) calculations have been applied for describing the mechanism of formation of lithium fluoride (LiF) nanotubes with cubic, hexagonal, octagonal, decagonal, dodecagonal, and tetradecagonal cross-sections. It has been shown that high energy structures, such as nanowires, nanorings, nanosheets, and nanopolyhedra are transient species for the formation of stable nanotubes. Unprecedented (LiF)n clusters (n≤12) were also identified, some of them lying less than 10 kcal mol−[1] above their respective global minima. Such findings indicate that stochastic synthetic techniques, such as laser ablation and chemical vapor deposition, should be combined with a template-driven procedure in order to generate the nanotubes with adequate efficiency. Apart from the stepwise growth of LiF units, the formation of nanotubes was also studied by rolling up a planar square sheet monolayer, which could be hypothetically produced from the exfoliation of the FCC crystal structure. It was shown that both pathways could lead to the formation of alkali halide nanotubes, a still unprecedented set of one-dimensional materials.  相似文献   

12.
The full catalytic process (precatalyst activation, propagating cycle and active-species interconversion) of the ring-closing enyne metathesis (RCEYM) reaction of 1-allyloxy-2-propyne with the Grubbs-Hoveyda complex as catalyst was studied by B3LYP density functional theory. Both the ene-then-yne and yne-then-ene pathways are considered and, for the productive catalytic cycle, the feasibility of the endo-yne-then-ene route is also explored. Calculations predict that the ene-then-yne and yne-then-ene pathways proceed through equivalent steps, the only major difference being the order in which they take place. In this way, all alkene metathesis processes studied here involve four steps: olefin coordination, cycloaddition, cycloreversion and olefin decoordination. Among them, the two more energetically demanding ones are the olefin coordination and decoordination steps. The reaction of the alkyne fragment consists of two steps: alkyne coordination and alkyne skeletal reorganization, the latter of which has the highest Gibbs energy barrier. Comparison between the ene-then-yne and yne-then-ene pathways shows that there is no clear energetic preference for either of the two processes, and thus both should be operative when unsubstituted enynes are involved. In addition, although the endo orientation is computed to be slightly disfavored, it is not ruled out for 1-allyloxy-2-propyne, and thus calculations seem to indicate that the exo versus endo selectivity is strongly influenced by the presence of substituents in the reagent.  相似文献   

13.
DFT calculations were performed to investigate the detailed reaction mechanisms in the copper‐catalyzed regiodivergent silacarboxylation of allenes. According to our calculations, the catalysis would bifurcate at the allene silylcupration step, followed by CO2 insertion, eventually leading to the carboxylated vinylsilane or allylsilane products. The gaps between the two silylcupration barriers were predicted to be ?2.3, ?0.4, and 2.2 kcal mol?1 when using (rac)‐Me‐DuPhos, dcpe, and PCy3 (+H2O) as the ligands, which nicely accounted for the experimental vinylsilane/allylsilane ratios of 93:7, 50:50, and 15:85, respectively. By means of transition‐state‐energy decomposition, we found that the energy penalty of catalyst deformation into its transition‐state geometry was the key factor in determining the direction of the reaction. The switchable regioselectivity by using different P ligands could be ascribed to structural changes of the Cu?Si and Cu?P bonds during the silylcupration process.  相似文献   

14.
鲁米诺化学发光分析法研究进展   总被引:1,自引:0,他引:1  
邵晓东  李瑛 《化学研究》2010,21(1):102-112
从化学发光反应机理和应用进展两个方面对鲁米诺-过氧化氢、鲁米诺-铁氰化钾、鲁米诺-碘化物、鲁米诺-高锰酸钾和鲁米诺-溶解氧等化学发光体系进行了综述;指出鲁米诺化学发光体系是应用最为广泛的一类化学发光体系,同时对鲁米诺化学发光分析法的发展方向进行了展望.  相似文献   

15.
Two very rare cases of barium boryloxides, the homoleptic [Ba(OB{CH(SiMe3)2}2)2⋅C7H8] and the heteroleptic [{LONO4}BaOB{CH(SiMe3)2}2] stabilised by the multidentate aminoetherphenolate {LONO4}, are presented, and their structural properties are discussed. The electron-deficient [Ba(OB{CH(SiMe3)2}2)2⋅C7H8] shows, in particular, resilient η6-coordination of the toluene molecule. Together with its amido parents [Ba{N(SiMe3)2}2⋅thf2] and [Ba{N(SiMe3)2}2]2, this complex catalyses the fast and chemoselective dehydrocoupling of borinic acids R2BOH and hydrosilanes HSiR′3, yielding borasiloxanes R2BOSiR′3 in a controlled fashion. The assessment of substrate scope indicates that, for now, the reaction is limited to bulky borinic acids. Kinetic analysis shows that the rate-limiting step of the catalytic manifold traverses a dinuclear transition state. A detailed mechanistic scenario is proposed on the basis of DFT computations, the results of which are fully consistent with experimental data. It consists of a stepwise process with rate-determining nucleophilic attack of a metal-bound O-atom onto the incoming hydrosilane, involving throughout dinuclear catalytically active species.  相似文献   

16.
17.
The present computational mechanistic study explores comprehensively the organoactinide‐mediated intramolecular hydroamination/cyclisation (IHC) of aminodienes by employing a reliable DFT method. All the steps of a plausible catalytic reaction course have been scrutinised for the IHC of (4E,6)‐heptadienylamine 1 t by [(CGC)Th(NMe2)2] precatalyst 2 (CGC=[Me2Si(η5‐Me4C5)(tBuN)]2?). For each of the relevant elementary steps the most accessible pathway has been identified from a multitude of mechanistic possibilities. The operative mechanism involves rapid substrate association/dissociation equilibria for the 3 t ‐S resting state and also for azacyclic intermediates 4 a , 4 s , easily accessible and reversible exocyclic ring closure, supposedly facile isomerisation of the azacycle’s butenyl tether prior to turnover‐limiting protonolysis. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the accessed barrier for turnover‐limiting protonolysis does agree remarkably well with observed performance data; 3) the ring‐tether double‐bond selectivity is consistently elucidated, which led to predict the product distribution correctly. This study provides a computationally substantiated rationale for observed activity and selectivity data. Steric demands at the CGC framework appear to be an efficient means for modulating both performance and ring‐tether double‐bond selectivity. The careful comparison of (CGC)4f‐element and (CGC)5f‐element catalysts revealed that aminodiene IHC mediated by organoactinides and organolanthanides proceeds through a similar mechanistic scenario. However, cyclisation and protonolysis steps, in particular, feature a markedly different reactivity pattern for the two catalyst classes, owing to enhanced bond covalency of early actinides when compared to lanthanides.  相似文献   

18.
The present computational mechanistic study comprehensively explores alternative scenarios for activation of the amine-linked diene C=C linkage toward C-N ring closure in intramolecular hydroamination of a prototypical aminodiene by a well-characterised lanthanocene-amido catalyst. Firstly, the non-insertive mechanism by Scott featuring ring closure with concomitant amino proton delivery onto the diene unit has been explored and key features have been defined. This scenario has been compared with the classical stepwise insertion mechanism that involves rapid substrate association/dissociation equilibria for the 3t-S1 resting state and also for azacycle intermediates 4s, 4a, facile and reversible exocyclic migratory diene insertion into the La-N(amido) σ-bond, linked to turnover-limiting La-C azacycle aminolysis. The Ln-N σ-bond insertive mechanism prevails for the examined intramolecular hydroamination of (4E,6)-heptadienylamine 1t by [Cp*(2)La-CH(TMS)(2)] starting material 2.The following aspects are in support of this mechanism: 1) the derived rate law is consistent with the observed empirical rate law; 2) the assessed effective barrier for turnover-limiting aminolysis does agree remarkably well with empirically determined Eyring parameters; 3) the ring-ether double-bond selectivity is consistently elucidated. This study reveals that the non-insertive mechanism is not achievable for the particular lanthanocene-amido catalyst and furthermore cannot account for the observed product spectrum. Notwithstanding of these findings, the non-insertive mechanism cannot be discarded a priori for intramolecular aminodiene hydroamination. Spatial demands around the lanthanide centre influence the two mechanisms differently. The Ln-N σ-bond insertive mechanism critically relies on a sufficiently accessible lanthanide and enhanced encumbrance renders cyclisation and aminolysis steps less accessible kinetically. It contrasts with the non-insertive mechanism, where greater lanthanide protection has a rather modest influence. The present study indicates that the non-insertive mechanism would prevail if the lanthanide centre were to be protected effectively against C=C bond approach. Notably, a different product spectrum would be expected for aminodiene hydroamination following the insertive or non-insertive route.  相似文献   

19.
A common feature of several classes of intrinsically reactive proteins with diverse biological functions is that they undergo self‐catalyzed reactions initiated by an N→O or N→S acyl shift of a peptide bond adjacent to a serine, threonine, or cysteine residue. In this study, we examine the N→O acyl shift initiated peptide‐bond hydrolysis at the serine residue on a model compound, glycylserine (GlySer), by means of DFT and ab initio methods. In the most favorable rate‐determining transition state, the serine ?COO? group acts as a general base to accept a proton from the attacking ?OH function, which results in oxyoxazolidine ring closure. The calculated activation energy (29.4 kcal mol?1) is in excellent agreement with the experimental value, 29.4 kcal mol?1, determined by 1H NMR measurements. A reaction mechanism for the entire process of GlySer dipeptide hydrolysis is also proposed. In the case of proteins, we found that when no other groups that may act as a general base are available, the N→O acyl shift mechanism might instead involve a water‐assisted proton transfer from the attacking serine ?OH group to the amide oxygen. However, the calculated energy barrier for this process is relatively high (33.6 kcal mol?1), thus indicating that in absence of catalytic factors the peptide bond adjacent to serine is no longer a weak point in the protein backbone. An analogous rearrangement involving the amide N‐protonated form, rather than the principle zwitterion form of GlySer, was also considered as a model for the previously proposed mechanism of sea‐urchin sperm protein, enterokinase, and agrin (SEA) domain autoproteolysis. The calculated activation energy (14.3 kcal mol?1) is significantly lower than the experimental value reported for SEA (≈21 kcal mol?1), but is still in better agreement as compared to earlier theoretical attempts.  相似文献   

20.
A systematic theoretical study has been performed on the recently reported RhI‐catalyzed [3+2+2] carbocyclization reactions between alkenylidenecyclopropanes (ACPs) and alkynes. With the aid of theoretical calculations, two possible mechanisms, that is, alkene‐carbometalation‐first and alkyne‐carbometalation‐first mechanisms, are examined in this study. In the oxidative addition step, the possibility of reaction on either the distal or proximal C? C bond of the cyclopropane group has been evaluated. The calculations indicate that the alkene‐activation‐first mechanism is more favored for the overall catalytic cycle. This mechanism involves four steps, that is, oxidative addition of the distal (rather than the proximal) C? C bond of cyclopropane group, alkene carbometalation, alkyne carbometalation, and reductive elimination. The rate‐determining step in the overall catalytic cycle is the carbometalation of the alkyne (i.e., the alkyne‐insertion step) and this step also determines the regioselectivity. Finally, the origin of the regioselectivity is determined by the steric effect (i.e., the steric crowding between the electron‐withdrawing group on alkyne and other ligands on the rhodium center) in the alkyne‐insertion step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号