首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3, NO2, and OTf) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO bridging ligand.

Deoxygenation of nitrogen oxyanions coordinated to nickel using reduced borylated heterocycles leads to N–N bond formation and N2O liberation. The nickel dimer product facilitates NO disproportionation, leading to a synthetic cycle.  相似文献   

2.
Triaminotriazolotriazole (TATOT) was used as a nitrogen‐rich ligand for the formation of the energetic ZnII complexes [ZnCl2(TATOT)2] · H2O ( 2 ), [Zn(H2O)(TATOT)3](NO3)2 · 2H2O ( 3 ), and [Zn(TATOT)4](ClO4)2 · 2H2O ( 4 ). The zinc species were prepared in a straightforward and inexpensive synthesis. The complexes 2 – 4 were structurally characterized using X‐ray diffraction. Additionally, the compounds were characterized using elemental analysis and infrared (IR) spectroscopy. Finally, the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA) and BAM (Bundesanstalt für Materialforschung und ‐prüfung) methods.  相似文献   

3.
The enthalpies of mixing (ΔHM) of the following binary fused-salt mixtures have been determined calorimetrically: ZnCl2? CsCl, ZnCl2? LiCl, ZnCl2? AgCl, ZnBr2? CsBr, ZnBr2? LiBr at 665°C; ZnCl2? CsCl, ZnCl2? AgCl, and ZnCl2? ZnBr2 at 495°C. The results are discussed with respect to the following points: (1) Comparison with the transition metal chloride-alkali chloride systems, (2) “complexing” in the mixture. (3) effect of the network-like structure of pure ZnX2, and (4) effect of temperature.  相似文献   

4.
Abstract

Hydrothermal reaction of Zn(NO3)2 · 6?H2O with 2-carboxyethyl(phenyl)phosphinate (H2L) and 4,4'-bipyridine (4,4′-bipy) led to a novel zinc(II) carboxyphosphinate [ZnL(4,4′-bipy)0.5]n (1). The zinc ion is tetrahedrally coordinated by two phosphinate oxygen atoms, one carboxylate oxygen atom, and one nitrogen atom of 4,4′-bipy ligand. The L2- ligand and zinc ion can be seen as three- and four-connected nodes, respectively. Compound 1 shows a layered network with (3,4)-connected topology. It exhibits a broad blue fluorescent emission band at 459?nm, which can be attributed to 4,4′-bipy intraligand emission as well as to H2L emission. It is a diamagnetic system between 300?K and 11?K.  相似文献   

5.
The isomorphous title complexes, dichlorido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnCl2(C11H11N3O2)2]·2H2O, and dibromido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnBr2(C11H11N3O2)2]·2H2O, were synthesized and crystallized by slow evaporation of the solvent from a solution of the ligand and either zinc chloride or zinc bromide, respectively, in water/ethanol. The ZnII ions occupy twofold axes in the noncentrosymmetric orthorhombic space group Fdd2. The metal ion is approximately tetrahedrally coordinated by two monodentate triazole groups of the ligands and additionally by two halide ions. The water molecules incorporate the complexes into a three‐dimensional framework made up by hydrogen bonds. Furthermore, each complex possesses two hydrogen‐bond‐donor sites represented by the carboxy groups and two acceptor sites at the noncoordinating N atoms of the triazoles.  相似文献   

6.
In order to explore the influences of (de‐)protonation of the imidazole ring on the structural diversity of the resulting complexes, the imidazole‐based ligands 4, 5‐diphenylimidazole (Hdpi) and 1H‐phenanthro[9, 10‐d]imidazole (Hpi) were utilized as bulky building blocks to construct four complexes by solvothermal reactions, i.e. [Ag(Hdpi)2](NO3) · (H2O) ( 1 ), [Cu(dpi)] ( 2 ), [Cu(Hpi)(NO3)] ( 3 ), and [(H2pi)(NO3)] · H2O ( 4 ). In complex 1 , two Hdpi ligands adopt a monodentate pattern and coordinate with one AgI ion to form a mononuclear unit, which is further connected by hydrogen bonds into a 1D supramolecular helix. The deprotonated dpi ligand of 2 acts in bidentate mode, and bridges CuI ions to afford a 1D chain. In 3 , the NO3 ion, acts as a monodentate bridging ligand and joins CuI ions to generate a 1D chain. The Hpi ligand employs a monodentate mode to bond with CuI ions of the 1D chain. 4 is protonated and two H2pi nitrogen atoms are free of coordination. Interestingly, hydrogen bonds among the NO3 ion, the H2pi ligand, and the water molecule yield a macro ring R44(14). The resulting structural diversity reveals that the (de‐)protonation of imidazole ring directly steers the coordination number of ligand, and thus causes a significant effect on the structure, especially the dimensionality. Furthermore, the solid‐state fluorescence properties of the free ligands and compounds 1 – 4 were studied at room temperature.  相似文献   

7.
The self‐assembly of 4 ‐ MTPP [ 4 ‐ MTPP = 2‐(methylthio)‐4‐(pyridin‐4‐yl)pyrimidine] with Cu(NO3)2 and AgNO3 was structurally investigated. For Cu(NO3)2, a discrete mononuclear CuII coordination compound, [Cu( 4 ‐ MTPP )2(NO3)2] ( 1 ), resulted that is exclusively based on Cu–N coordination. For AgNO3, a unique one‐dimensional double‐chain structure ( 2 ) was obtained with the Ag–N distances varying from 2.181(9) to 2.223(9) Å, and the average Ag–S distance being 2.98 Å. Compared to zero‐dimensional 1 , the extension to one‐dimensional 2 is considered to result from the specific affinity between Ag+ and the ligand 4 ‐ MTPP that is attributed to the strong coordinating tendency of silver for aromatic nitrogen and thioether sulfur atoms.  相似文献   

8.
Liu  Qi  Sun  Xiaoqiang  Zhu  Yiqing  Li  Baolong  Xu  Zheng  Liu  Huibiao  Yu  Kaibei 《Transition Metal Chemistry》2001,26(3):369-371
AgNO2 (1 mol) reacts with hexamethylenetetramine (hmt) (1 mol) in MeCN–H2O to yield a two-dimensional coordination polymer [Ag2( 4-hmt)(NO2)2]n with square cavities. The Ag2 atom is located in a linear structure coordination environment with two nitrogen atoms from two hmt molecules respectively. The Ag1 atom is coordinated in a triangular prism surrounded by two nitrogen atoms from two hmt molecules respectively and four oxygen atoms from two NO 2 ions respectively. The four nitrogen atoms of each hmt unit are all connected to AgI to form a two-dimensional network.  相似文献   

9.
New protocols for controlled reduction of carboxamides to either alcohols or amines were established using a combination of sodium hydride (NaH) and zinc halides (ZnX2). Use of a different halide on ZnX2 dictates the selectivity, wherein the NaH‐ZnI2 system delivers alcohols and NaH‐ZnCl2 gives amines. Extensive mechanistic studies by experimental and theoretical approaches imply that polymeric zinc hydride (ZnH2) is responsible for alcohol formation, whereas dimeric zinc chloride hydride (H?Zn?Cl)2 is the key species for the production of amines.  相似文献   

10.
The title bimetallic compound, [Yb43‐OH)4(C6H13NO2)7(H2O)7][ZnCl4][ZnCl3(OH)]Cl4·8H2O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb43‐OH)4(l ‐leucine)7(H2O)7]8+ complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water mol­ecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight‐coordinate square‐antiprismatic coordination. The Yb43‐OH)4(l ‐leu­cine)7(H2O)7]8+ cation, the [ZnCl4]2−, [ZnCl3OH]2− and Cl anions, and the lattice water mol­ecules are linked via hydrogen bonds.  相似文献   

11.
《Comptes Rendus Chimie》2017,20(4):446-459
We revisit nitrogen based simple fundamental molecules in their solid state structures, with the purpose of casting new light on the stereoactivity of valence lone pairs (LPs)—formally N(2s2)—in different crystal geometries. Based on coupled investigations of crystal chemistry and ab initio DFT calculations providing the electron localization function (ELF), LP behavior is analyzed precisely by finding its position E, orientation and “volume of influence” which consists in an electronic cloud generated around the so-called ‘centroïd’ Ec of the electronic doublet. The results show the paramount importance of the role of N(2s2) LP in the crystal network architecture through the different case studies pertaining to ammonia (NH3), nitrosyl fluoride (NOF), nitrosyl nitrite (N2O3), silver nitrite (AgNO2), and nitrogen trichloride (NCl3). An unexpected direct ionic interaction between [NO]+ or Ag+ and the centroïd Ec of the [NO2Ec] nitrite group has been evidenced in N2O3E2 and AgNO2, respectively.  相似文献   

12.
Reductive elimination of alkyl−PdII−O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4] and AgNO3 additive under toluene/H2O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0-catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I and NO3, alkene insertion and SN2-type alkyl−PdII−ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2NO ligand from the alkyl−PdII−ONO2 species, thus enabling the challenging alkyl−PdII−ONO2 reductive elimination to be feasible.  相似文献   

13.
Polymerization of acrylonitrile photoinitiated by naphthalene, anthracene, phenanthrene, and pyrene is accelerated by an admixture of zinc (II) chloride, acetate, or nitrate. The effect of zinc (II) salts on the rate of pyrene-photoinitiated polymerization of acrylonitrile leads to an increase in this rate in the order Zn/OCOCH3/2 < ZnCl2 < Zn/NO3/2. The maximum polymerization rate is achieved at the molar ratio [ZnCl2]/([ZnCl2] + [pyrene]) approximately 0.7. In contrast to the photoinitiated polymerization of acrylonitrile, the methyl methacrylate admixture of zinc (II) chloride exerts a smaller effect on the polymerization rate. In the pyrene-photoinitiated polymerization of styrene an admixture of zinc (II) chloride retards the polymerization rate. Fluorescence of aromatic hydrocarbon in the system acrylonitrile–aromatic hydrocarbon is efficiently quenched by zinc (II) chloride. Stern–Volmer constants determined for pyrene (80 dm3 mole?1), phenanthrene (66 dm3 mole?1), and naphthalene (49 dm3 mole?1) are higher by about 2–3 orders of the Stern–Volmer constants for fluorescence quenching of aromatic hydrocarbons by acrylonitrile in the absence of ZnCl2. The fluorescence of anthracene in acrylonitrile is not quenched by ZnCl2. The acceleration effect of Zn (II) salts on the polymerization of acrylonitrile photoinitiated by aromatic hydrocarbons depends on two factors: an increase in the ratio of the rate constant of the growth and termination reactions, kp/kt, and an increase in the quenching constant of fluorescence of aromatic hydrocarbon, kq, by the complex {acrylonitrile…ZnCl2}. ZnCl2 thus influences both the growth and initiation reactions of the polymerization process.  相似文献   

14.
The coordination behaviour of the novel ligand, HMPz4Cy, is reported, together with solid state isolation of its diamagnetic cobalt(III) complexes, [Co(MPz4Cy)2]X · nH2O (X = Cl, Br, NO3, ClO4 and BF4). I.r. and 1H-n.m.r. data for the free ligand and its CoIII complexes confirm that the ligand, HMPz4Cy, acts as a uninegative anion with NNS tridentate function via the pyrazolyl nitrogen (tertiary), azomethine nitrogen and thiol sulphur. Electronic spectra (both solid and solution) are commensurate with a distorted octahedral environment for the reported CoIII species. Cyclic voltammograms of CoIII complexes indicate a quasireversible Co+3/Co+2 couple. X-ray crystallography of a representative species, [Co(MPz4Cy)2]Cl · 2.75H2O (C2, monoclinic), has shown unambiguously that the two ligands are orthogonally coordinated to the central CoIII ion with both the thiolato sulphurs and both pyrazolyl nitrogen atoms in cis positions.  相似文献   

15.
The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2MXn (MXn=SbCl5, MnCl4, ZnCl4, ZnCl2Br2, ZnBr4), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+ cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl52− and MnCl42−, but significantly enhanced for the hybrids containing wide band gap non-emissive ZnCl42−. Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π–π stacking and intermolecular electronic coupling between TPP+ cations in TPP2ZnCl4 than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2ZnX4 can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.  相似文献   

16.

Cu(II), Ni(II) and Zn(II) complexes with the Schiff base derived from 1,2-bis-(o-aminophenoxy)ethane with salicylaldehyde have been prepared. The complexes have been characterized by elemental analysis, magnetic measurements, 1H NMR, 13C NMR, UV, visible and IR spectra as well as conductance measurements. The ligand is coordinated to the central metal as a tetradentate ONNO ligand. The four bonding sites are the central azomethine nitrogen and aldehydic OH groups. The ligand was used for complexation studies. Stability constants were measured by a conductometric method. Furthermore, the stability constants for complexation between ZnCl2 and Cu(NO3)2 salts and N,N′-bis(salicylidene)-1,2-bis-(o-aminophenoxy)ethane (H2L) in 80% dioxane/water and pure methanol were determined from conductance measurements. The magnitudes of these ion association constants are related to the nature of the solvation of the cation and the complexed cation. The mobilities of the complexes are also dependent, in part, upon solvation effects.  相似文献   

17.
New complexes of the general formula, [M(H2dap4NMetsc)(H2O)2](NO3)2·H2O (M = Zn2+, Cd2+; H2dap4NMetsc = 2,6-diacetylpyridinebis(4N-methylthiosemicarbazone) and [Sn((dap4NMetsc)X2] (X = Ph, Cl and I) (dap4NMetsc = the doubly deprotonated form of 2,6-diacetylpyridine bis(4N-methylthiosemicarbazone) have been synthesized and structurally characterized by a variety of physico-chemical techniques. X-ray crystallographic structure determination shows that in the zinc and cadmium complexes, the bis(thiosemicarbazone) ligand coordinates as a neutral N3S2 pentadentate chelating agent through the two azomethine nitrogen atoms, the pyridine nitrogen atom and the two thione sulfur atoms. The N3S2 donors of the ligand occupy the equatorial plane and the two aqua ligands occupy the sixth and seventh axial positions of the seven-coordinated cadmium(II) and zinc(II) ions. In the tin(IV) complexes, however, the thiosemicarbazone is coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The two apical positions of the seven-coordinate tin(IV) ion are occupied by either phenyl, chlorido or iodido ligands. In each of the complexes, the overall geometry adopted by the metal ion may be considered as a distorted pentagonal-bipyramid.  相似文献   

18.
2-Methyl-6-(5-H-methyl-chloro-nitro-1H-benzimidazol-2-yl)-phenols( HL x :x= 1-4)ligands and HL1 complexes with Fe(NO3)3, Cu(NO3)2, AgNO3, Zn(NO3)2 have been synthesized and characterized. The structures of the compounds were confirmed on the basis of elemental analysis, molar conductivity, magnetic moment, FT-IR, 1H-and 13C-NMR. Antibacterial activity of the free ligands, their hydrochloride salts and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide as well as the minimum inhibitory concentration dilution method, against nine bacteria. While HL1 ligand has not any activity, it’s Ag(I) complex show antibacterial effect toward almost to all the bacteria. Zn(II) complex has antibacterial effect on especially K. pneumoniae, S. epidermidis and S. aureus bacteria.  相似文献   

19.
Two zinc coordination polymers, {[Zn(HATr)2](NO3)2}n (1) and {[Zn2(HATr)4](ZnCl4)(NO3)2·H2O}n (2), were synthesized from reactions of 3-hydrazino-4-amino-1,2,4-triazole dihydrochloride (HATr·2HCl) with Zn(NO3)2. The polymers were characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), elemental analysis, and differential scanning calorimetry. The crystal structures revealed that 1 and 2 have 1-D-chain structures, which were further assembled to form 3-D-frameworks by hydrogen bonds. Thermal analyses showed that these two compounds have thermal stability up to 280 °C. The energies of combustion, enthalpies of formation, critical temperatures of thermal explosion, entropies of activation (ΔS), enthalpies of activation (ΔH), and free energies of activation (ΔG) were also measured and calculated. Furthermore, the sensitivities of 1 and 2 toward impact, friction, and static were determined, which revealed that 1 and 2 were less sensitive than Ni(N2H4)3(NO3)2.  相似文献   

20.
Summary Reaction of 1,4,8, 12-tetra-azacyclopentadecance ([15])-aneN4) with an excess of acrylonitrile gives theN-tetracyanoethylated ligand (L). Several new complexes of this ligand with nickel(II), copper(II) and zinc(II) have been prepared and characterised. The complexes can be formulated [NiL]n(ClO4)2n, [ML](ClO4)2 (M=CuII and ZnII), [NiL(NCS)2], [NiLCl2], [CuL](NO3)2 and [NiL]n(NO3)2n·2H2O. Spectral, magnetic and conductivity data are reported and possible structures are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号