首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.   In this paper we prove the stability of the projection onto the finite element trial space of piecewise polynomial, in particular, piecewise linear basis functions in for . We formulate explicit and computable local mesh conditions to be satisfied which depend on the Sobolev index s. In conclusion we prove a stability condition needed in the numerical analysis of mixed and hybrid boundary element methods as well as in the construction of efficient preconditioners in adaptive boundary and finite element methods. Received October 14, 1999 / Revised version received March 24, 2000 / Published online October 16, 2000  相似文献   

2.
New anisotropic a priori error estimates   总被引:5,自引:0,他引:5  
Summary. We prove a priori anisotropic estimates for the and interpolation error on linear finite elements. The full information about the mapping from a reference element is employed to separate the contribution to the elemental error coming from different directions. This new error estimate does not require the “maximal angle condition”. The analysis has been carried out for the 2D case, but may be extended to three dimensions. Numerical experiments have been carried out to test our theoretical results. Received March 3, 2000 / Revised version received June 27, 2000 / Published online April 5, 2001  相似文献   

3.
Summary. Numerical methods are considered for generating polynomials orthogonal with respect to an inner product of Sobolev type, i.e., one that involves derivatives up to some given order, each having its own (positive) measure associated with it. The principal objective is to compute the coefficients in the increasing-order recurrence relation that these polynomials satisfy by virtue of them forming a sequence of monic polynomials with degrees increasing by 1 from one member to the next. As a by-product of this computation, one gains access to the zeros of these polynomials via eigenvalues of an upper Hessenberg matrix formed by the coefficients generated. Two methods are developed: One is based on the modified moments of the constitutive measures and generalizes what for ordinary orthogonal polynomials is known as "modified Chebyshev algorithm". The other - a generalization of "Stieltjes's procedure" - expresses the desired coefficients in terms of a Sobolev inner product involving the orthogonal polynomials in question, whereby the inner product is evaluated by numerical quadrature and the polynomials involved are computed by means of the recurrence relation already generated up to that point. The numerical characteristics of these methods are illustrated in the case of Sobolev orthogonal polynomials of old as well as new types. Based on extensive numerical experimentation, a number of conjectures are formulated with regard to the location and interlacing properties of the respective zeros. Received July 13, 1994 / Revised version received September 26, 1994  相似文献   

4.
Summary. In this paper, we derive the optimal error bounds for the stabilized MITC3 element [3], the MIN3 type element [7] and the T3BL element [8]. In this way we have solved the problem proposed recently in [5] in a positive manner. Moreover, we estimate the difference between stabilized MITC3 and MIN3 and show it is of order uniform in the plate thickness. Received May 31, 2000 / Revised version received April 2, 2001 / Published online September 19, 2001  相似文献   

5.
Summary. We consider three triangular plate bending elements for the Reissner-Mindlin model. The elements are the MIN3 element of Tessler and Hughes [19], the stabilized MITC3 element of Brezzi, Fortin and Stenberg [5] and the T3BL element of Xu, Auricchio and Taylor [2, 17, 20]. We show that the bilinear forms of the stabilized MITC3 and MIN3 elements are equivalent and that their implementation may be simplified by using numerical integration of reduced order. The T3BL element is shown to be essentially the same as the MIN3 and stabilized MITC3 elements with reduced integration. We finally introduce a general stabilized finite element formulation which covers all three methods. For this class of methods we prove the stability and optimal convergence properties. Received November 4, 1996 / Revised version received May 29, 1997 / Published online January 27, 2000  相似文献   

6.
Summary. Interpolation with translates of a basis function is a common process in approximation theory. The most elementary form of the interpolant consists of a linear combination of all translates by interpolation points of a single basis function. Frequently, low degree polynomials are added to the interpolant. One of the significant features of this type of interpolant is that it is often the solution of a variational problem. In this paper we concentrate on developing a wide variety of spaces for which a variational theory is available. For each of these spaces, we show that there is a natural choice of basis function. We also show how the theory leads to efficient ways of calculating the interpolant and to new error estimates. Received December 10, 1996 / Revised version received August 29, 1997  相似文献   

7.
Summary. An unusual stabilized finite element is presented and analyzed herein for a generalized Stokes problem with a dominating zeroth order term. The method consists in subtracting a mesh dependent term from the formulation without compromising consistency. The design of this mesh dependent term, as well as the stabilization parameter involved, are suggested by bubble condensation. Stability is proven for any combination of velocity and pressure spaces, under the hypotheses of continuity for the pressure space. Optimal order error estimates are derived for the velocity and the pressure, using the standard norms for these unknowns. Numerical experiments confirming these theoretical results, and comparisons with previous methods are presented. Received April 26, 2001 / Revised version received July 30, 2001 / Published online October 17, 2001 Correspondence to: Gabriel R. Barrenechea  相似文献   

8.
Summary. The aim of this work is to derive rate of convergence estimates for the spectral approximation of a mathematical model which describes the vibrations of a solid-fluid type structure. First, we summarize the main theoretical results and the discretization of this variational eigenvalue problem. Then, we state some well known abstract theorems on spectral approximation and apply them to our specific problem, which allow us to obtain the desired spectral convergence. By using classical regularity results, we are able to establish estimates for the rate of convergence of the approximated eigenvalues and for the gap between generalized eigenspaces. Received February 6, 1996 / Revised version received November 28, 1996  相似文献   

9.
Summary. The aim of this paper is to give a new method for the numerical approximation of the biharmonic problem. This method is based on the mixed method given by Ciarlet-Raviart and have the same numerical properties of the Glowinski-Pironneau method. The error estimate associated to these methods are of order O(h) for k The algorithm proposed in this paper converges even for k, without any regularity condition on or . We have an error estimate of order O(h) in case of regularity. Received February 5, 1999 / Revised version received February 23, 2000 / Published online May 4, 2001  相似文献   

10.
Summary. A least-squares mixed finite element method for general second-order non-selfadjoint elliptic problems in two- and three-dimensional domains is formulated and analyzed. The finite element spaces for the primary solution approximation and the flux approximation consist of piecewise polynomials of degree and respectively. The method is mildly nonconforming on the boundary. The cases and are studied. It is proved that the method is not subject to the LBB-condition. Optimal - and -error estimates are derived for regular finite element partitions. Numerical experiments, confirming the theoretical rates of convergence, are presented. Received October 15, 1993 / Revised version received August 2, 1994  相似文献   

11.
Summary. Interpolation error estimates for a modified 8-node serendipity finite element are derived in both regular and degenerate cases, the latter of which includes the case when the element is of triangular shape. For defined over a quadrilateral K, the error for the interpolant is estimated as , where in the regular case and in the degenerate case, respectively. Thus, the obtained error estimate in the degenerate case is of the same quality as in the regular case at least for . Results for some related elements are also given. Received June 2, 1997 / Published online March 16, 2000  相似文献   

12.
Summary. In this paper we study the numerical behaviour of elliptic problems in which a small parameter is involved and an example concerning the computation of elastic arches is analyzed using this mathematical framework. At first, the statements of the problem and its Galerkin approximations are defined and an asymptotic analysis is performed. Then we give general conditions ensuring that a numerical scheme will converge uniformly with respect to the small parameter. Finally we study an example in computation of arches working in linear elasticity conditions. We build one finite element scheme giving a locking behaviour, and another one which does not. Revised version received October 25, 1993  相似文献   

13.
Summary.   We combine a primal mixed finite element approach with a Dirichlet-to-Neumann mapping (arising from the boundary integral equation method) to study the weak solvability and Galerkin approximations of a class of linear exterior transmission problems in potential theory. Our results are mainly based on the Babuska-Brezzi theory for variational problems with constraints. We establish the uniqueness of solution for the continuous and discrete formulations, and show that finite element subspac es of Lagrange type satisfy the discrete compatibility conditions. In addition, we provide the error analysis, including polygonal approximations of the domain, and prove strong convergence of the Galerkin solutions. Moreover, under additional regularity assumptions on the solution of the continuous formulation, we obtain the asymptotic rate of convergence O(h). Received August 25, 1998 / Revised version received March 8, 2000 / Published online October 16, 2000  相似文献   

14.
Summary. Interior error estimates are derived for a wide class of nonconforming finite element methods for second order scalar elliptic boundary value problems. It is shown that the error in an interior domain can be estimated by three terms: the first one measures the local approximability of the finite element space to the exact solution, the second one measures the degree of continuity of the finite element space (the consistency error), and the last one expresses the global effect through the error in an arbitrarily weak Sobolev norm over a slightly larger domain. As an application, interior superconvergences of some difference quotients of the finite element solution are obtained for the derivatives of the exact solution when the mesh satisfies some translation invariant condition. Received December 29, 1994  相似文献   

15.
Summary. The aim of this work is to study a decoupled algorithm of a fixed point for solving a finite element (FE) problem for the approximation of viscoelastic fluid flow obeying an Oldroyd B differential model. The interest for this algorithm lies in its applications to numerical simulation and in the cost of computing. Furthermore it is easy to bring this algorithm into play. The unknowns are the viscoelastic part of the extra stress tensor, the velocity and the pressure. We suppose that the solution is sufficiently smooth and small. The approximation of stress, velocity and pressure are resp. discontinuous, continuous, continuous FE. Upwinding needed for convection of , is made by discontinuous FE. The method consists to solve alternatively a transport equation for the stress, and a Stokes like problem for velocity and pressure. Previously, results of existence of the solution for the approximate problem and error bounds have been obtained using fixed point techniques with coupled algorithm. In this paper we show that the mapping of the decoupled fixed point algorithm is locally (in a neighbourhood of ) contracting and we obtain existence, unicity (locally) of the solution of the approximate problem and error bounds. Received July 29, 1994 / Revised version received March 13, 1995  相似文献   

16.
Summary. Both for the - and -norms, we prove that, up to higher order perturbation terms, edge residuals yield global upper and local lower bounds on the error of linear finite element methods on anisotropic triangular or tetrahedral meshes. We also show that, with a correct scaling, edge residuals yield a robust error estimator for a singularly perturbed reaction-diffusion equation. Received April 19, 1999 / Published online April 20, 2000  相似文献   

17.
Summary. In this paper we derive an interior estimate for the Galerkin method with wavelet-type basis. Such an estimate follows from interior Galerkin equations which are common to a class of methods used in the solution of elliptic boundary value problems. We show that the error in an interior domain can be estimated with the best order of accuracy possible, provided the solution is sufficiently regular in a slightly larger domain, and that an estimate of the same order exists for the error in a weaker norm (measuring the effects from outside the domain ). Examples of the application of such an estimate are given for different problems. Received May 17, 1995 / Revised version received April 26, 1996  相似文献   

18.
Summary. The purpose of this paper is to analyze a finite element approximation of the stationary Navier-Stokes equations that allows the use of equal velocity-pressure interpolation. The idea is to introduce as unknown of the discrete problem the projection of the pressure gradient (multiplied by suitable algorithmic parameters) onto the space of continuous vector fields. The difference between these two vectors (pressure gradient and projection) is introduced in the continuity equation. The resulting formulation is shown to be stable and optimally convergent, both in a norm associated to the problem and in the norm for both velocities and pressure. This is proved first for the Stokes problem, and then it is extended to the nonlinear case. All the analysis relies on an inf-sup condition that is much weaker than for the standard Galerkin approximation, in spite of the fact that the present method is only a minor modification of this. Received May 25, 1998 / Revised version received August 31, 1999 / Published online July 12, 2000  相似文献   

19.
Anisotropic mesh refinement in stabilized Galerkin methods   总被引:8,自引:0,他引:8  
Summary. The numerical solution of a convection-diffusion-reaction model problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least-square type accomodates diffusion-dominated as well as convection- and/or reaction-dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is achieved using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used. Received March 6, 1995 / Revised version received August 18, 1995  相似文献   

20.
Summary. We consider the isoparametric transformation, which maps a given reference element onto a global element given by its vertices, for multi-linear finite elements on pyramids and prisms. We present easily computable conditions on the position of the vertices, which ensure that the isoparametric transformation is bijective. Received May 7, 1999 / Revised version received April 28, 2000 / Published online December 19, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号