首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercontinuum self-Q-switched ytterbium fiber laser.   总被引:18,自引:0,他引:18  
We have discovered a new mechanism for passive Q switching of fiber lasers. 10-kW peak power pulses with ~2-ns pulse widths are reported from a diode-pumped ytterbium-doped fiber laser. The laser generates a high-brightness Raman-dominated supercontinuum spectrum covering the complete window of transparency of silica fiber in the infrared from 1.06 to 2.3 mum.  相似文献   

2.
A new linear cavity BEFL configuration for increased Stokes-line generation is proposed and demonstrated utilizing a 2 × 2 coupler at the end of the linear cavity. The proposed linear cavity is able to generate up to 33 Stokes lines in the 1590-nm region at a channel spacing of 0.089 nm. The Stokes lines are generated at a BP power of 4 dBm and a 1480-nm pump power of 100 mW. The number of Stokes generated by the proposed BELF is higher compared to conventional BEFL configurations in which the 2 × 2 coupler is placed in the middle of the linear cavity. The number of Stokes lines generated is observed to depend on the 1480-nm pump power as well as the operating wavelength region, which must be as close as possible to the lasing bandwidth of the free-running BEFL. The proposed multiwavelength BEFL is able to operate stably at room temperatures and is also compact due to the use of a 215-cm bismuth-based EDF as the linear gain medium.  相似文献   

3.
A random distributed feedback fiber laser operating at 1115 nm has been demonstrated experimentally in standard communication optical fibers by using a LD-pumped Yb-doped fiber laser as the pump source. We have studied the effect of different fiber spans on this new type of random fiber laser output power. It is shown that the generation power is the highest up to 198 mW in a 50 km fiber span. The slope efficiency is more than 28.7%. Stable, high-power continuous-wave (CW) lasing can be generated when the pump power is 3.6 W. The threshold power has also been calculated which well proves a random fiber laser operating via Rayleigh scattering, amplified through the Raman scattering.  相似文献   

4.
Thermal effects in a dual-clad ytterbium fiber laser   总被引:5,自引:0,他引:5  
Brilliant NA  Lagonik K 《Optics letters》2001,26(21):1669-1671
We present experimental results of temperature tuning in a dual-clad ytterbium fiber laser. We varied the temperature of the fiber from 0 to 100 degrees C and found significant changes in operating wavelength, power, and threshold. Over this range, the wavelength shifted at a rate of 0.2 nm/ degrees C, and the lasing threshold increased by a factor of 2.  相似文献   

5.
A short wavelength band brillouin–erbium fiber laser (S-band BEFL) with enhanced characteristics is demonstrated using an additional erbium-doped fiber amplifier (EDFA) in the sub-loop of the laser system. Compared with the conventional BEFL without the additional EDFA, the enhanced BEFL has improved the number of channels as well as the flatness of the brillouin Stoke's peak power. By incorporating a double-pass EDFA, a stable output laser comb up to 8 channels was obtained at 1503 nm wavelength region with peak power variation for the first three Stokes is reduced from 30.9 to 5.4 dB. The incorporation of additional EDFA also increases the tuning range of the BEFL, which the maximum tuning range of 1.8 nm was obtained with the single-pass scheme. The S-band BEFL has constant spacing of 0.09 nm or 11 GHz, which has a potential application in dense wavelength division multiplexed system.  相似文献   

6.
7.
We report a ytterbium fiber laser mode locked at its 281st harmonic, which corresponds to a repetition rate greater than 10 GHz. The laser produces linearly polarized, 2-ps pulses with up to 38-mW of average output power. The mode-locked pulses are tunable over a 58-nm window centered on 1053 nm.  相似文献   

8.
9.
A multiwavelength Brillouin/erbium fiber laser (BEFL) with low threshold power is realized. A low threshold power of 3 mW and a wide tuning range of 18 nm can be achieved by controlling the reflected power in the nonlinear optical loop mirror (NOLM). Up to 24 lines with a wavelength spacing of 0.086 nm are generated at the Brillouin pump and at the 1 480-nm pump with 0.5 dBm (0.9 mW) and 25 mW of power, respectively.  相似文献   

10.
Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz.  相似文献   

11.
A robust, self-starting picosecond pulse source based on ytterbium (Yb3+) doped fiber laser is described. Utilizing a chirped-fiber-Bragg-grating (C-FBG) for dispersion control, solitary mode-locking is obtained without bulk dispersion compensation elements. A semiconductor saturable absorber (SESAM) is used for stable self-starting. 3.6 ps pulses are produced, with 45 MHz basic repetition-rate and mW scale average output power at 1060 nm. Detailed numerical simulations based on the modified nonlinear Schrödinger equation agree well with the experimental results and are used as a design tool for the solitary mode-locked picosecond laser. The presented design can be simply employed in an all-fiber environmentally-stable system.  相似文献   

12.
Multi-wavelength Ytterbium-doped fiber laser (YDFL) is demonstrated using a longitudinal mode interference assisted by a four-wave mixing (FWM) effect in a ring laser cavity. The gain medium is a 16 m long of the fabricated (Ytterbium-doped fiber) YDF, which has a core composition of 0.8 wt % of Yb2O3, 1.8 wt % of Al2O3 and 23 wt % of GeO2, Ytterbium ion fluorescence lifetime of 1.1 ms and absorption of 9.0 dB/m at the pump wavelength of 976 nm. 20 m long photonic crystal fiber (PCF) is used to provide FWM effect so that the energy of different oscillating lines can be redistributed to improve multi-wavelength operation. The proposed laser generates 12 lines of optical comb with a line spacing of approximately 0.59 nm at 1035 nm region.  相似文献   

13.
Optics and Spectroscopy - The spectra of luminescence of plumes that occur near targets of Nd: Y2O3, YSZ, and Al2O3 when they are irradiated by pulses of a ytterbium fiber laser with a wavelength...  相似文献   

14.
Low  Andy L.Y.  Chien  S.F.  Wong  W.M. 《Optical and Quantum Electronics》2003,35(11):1055-1063
In this paper, the operation of the Brillouin/erbium fibre laser (BEFL) in the long wavelength band (L-band or 1565–1625 nm) is experimentally demonstrated. The Stokes frequency is shifted 10 GHz from its Brillouin pump (BP) from 1598 to 1612 nm for the single wavelength BEFL. Multiple wavelength generation in the BEFL is realised by adding two 3-dB couplers, which are joined in a reverse-S arrangement to take a portion of the generated BEFL signal and re-inject it into the single-mode fibre (SMF) to seed a cascaded BEFL line in the same direction as the first BEFL line. Twenty lines including the anti-Stokes are obtained with a maximum BP and 980-nm pump power of 8.8 and 92 mW, respectively. The L-band BEFL has the potential to be used in future wavelength division multiplexing (WDM) communication system.  相似文献   

15.
We demonstrate a short-cavity erbium-ytterbium fiber laser that is passively mode locked by a saturable Bragg reflector with a fundamental repetition rate of 235 MHz . The laser operates in the soliton regime and under passive harmonic mode locking with 11 pulses in the cavity and produces output pulse trains at 2.6 GHz with transform-limited 270-fs pulses and 1.6 mW of average power. Within the cavity the multiple pulses form a stable pattern with fixed, nearly equal pulse-to-pulse temporal spacings, causing the output pulse train to have timing offsets of less than 15 ps. A slow gain-recovery model is proposed to explain the pulse-train self-organization.  相似文献   

16.
A Q-switched ytterbium-doped fiber laser(YDFL)is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide(MWCNTs-PEO)film as a passive saturable absorber(SA).The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film.Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation.The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW.The YDFL generates a stable pulse train with repetition rates ranging from7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW.At 59.55-mW pump power,the lowest pulse width and the highest pulse energy are obtained at 12.18μs and 143.5 nJ,respectively.  相似文献   

17.
We exploit the large anomalous dispersion in the waist of a fiber taper to offset the intracavity normal chromatic dispersion of an Yb-doped fiber laser. The fiber taper provides sufficient anomalous dispersion to ensure soliton operation of the mode-locked laser. With the taper removed from the cavity, the laser operates in a net normal dispersion regime.  相似文献   

18.
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.  相似文献   

19.
A compact, strictly all-fiber, picosecond pulse source based on ytterbium (Yb) doped fiber is described. Stable solitary mode-locking is obtained in a fiber-oscillator utilizing a carefully designed chirped fiber-Bragg-grating (C-FBG) for both dispersion control and spectral filtering. Self-starting is assured through the use of a fiber-coupled semiconductor-saturable-absorber-mirror (SESAM). The oscillator’s 50 MHz 3.8 ps pulse-train output at 1064 nm wavelength is amplified to 1.2 W average power by an Yb-doped fiber-amplifier, yielding 6.45 ps parabolic pulses. Numerical simulations of the fiber-oscillator design based on the modified nonlinear Schrödinger equation (NLSE), agree well with the experimental results.  相似文献   

20.
In this work we analyze the behavior of an erbium-doped fiber laser which is based on a simple scheme. Excitation of the active medium is performed in the 980 nm pump band with a CW semiconductor laser source. Two fiber Bragg gratings acting as mirrors of the Fabry–Perot laser cavity were used. One of these gratings was mounted over a piezoelectric (PZT) element. By applying voltage pulses to the piezoelectric, the laser cavity was temporally modulated and Q-switched laser pulses up to 530 mW peak powers at 3 kHz were obtained. Typical laser emission of 2–3 μs temporal widths and 0.1 nm of optical bandwidth have been achieved when the system was operated at 18.5 kHz repetition rates. Different behaviors were observed depending on the pumping level of the active medium and on the amplitude and frequency of the signal applied on the PZT. Q-switched laser output, in the erbium spectral gain region, with high laser efficiency of energy conversion was generated. Pumping at 76 mW and operating the laser at 18.5 kHz, an efficiency of 26% was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号