首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
卢浩  赵文君  张会强  王兵  王希麟 《中国物理 B》2017,26(1):14702-014702
The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation(LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and particles are obtained,and the results are in good agreement with the data in the literature. Particle clustering is observed in the near-wall and low-speed regions. To reveal the evolution process and mechanism of particle dispersion and transport in the turbulent boundary layer, a multi-group Lagrangian tracking is applied when the two-phase flow has become fully developed: the fluid fields are classified into four sub-regions based on the flow characteristics, and particles in the turbulent region are divided accordingly into four groups when the gas–particle flow is fully developed. The spatiotemporal transport of the four groups of particles is then tracked and analyzed. The detailed relationship between particle dispersion and turbulent motion is investigated and discussed.  相似文献   

2.
陈胜  施保昌  柳朝晖  贺铸  郭照立  郑楚光 《中国物理》2004,13(10):1657-1664
This paper deals with the numerical simulation of gas-solid two-phase flows in an Eulerian-Lagrangian scheme. The particle tracks are calculated using a recently developed exponential Lagrangian scheme, and the approach presently used for the computation of fluid phase is based on a modified Lattice-BGK model. Different from earlier publications, the present study employs a two-way coupling mechanism to handle the interactions between carrier phase and dispersed phase in the model. This new model is applicable to simulating gas-solid two-phase flows. For example, based on the scheme, we have recaptured some phenomena of planar laminar particle-laden flow over a backward-facing step in this research, and found a new interesting phenomenon.  相似文献   

3.
张庆宇  孙东科  朱鸣芳 《中国物理 B》2017,26(8):84701-084701
A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudoparticle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio.The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model.  相似文献   

4.
The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number St is less than 1.0, it reaches the minimal value when St is around 1.0, then it increases if St increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, (r)p, are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and flow structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when St is around 1.0.  相似文献   

5.
Gas flow characteristics in straight silicon microchannels   总被引:3,自引:0,他引:3       下载免费PDF全文
Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal silicon microchannels with different hydraulic diameters. The volume flow rate and pressure ratio are measured in the experiments. It is found that the friction coefficient is no longer a constant, which is different from the conventional theory. The characteristics are first explained by the theoretical analysis. A simplified rectangular model (rectangular straight channel model) is then proposed. The experimental results are compared with the theoretical predictions based on the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usually used. The difference between the experimental data and the theoretical predictions is found in the high-pressure ratio cases. The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studied to interpret the discrepancy. We discuss two important factors affecting the application extent of different prediction models.  相似文献   

6.
The lattice Boltzmann equation (LBE) model based on the Boltzmann equation is suitable for the numerical simulation of various flow fields.The fluid dynamics equation can be recovered from the LEB model.Howeverl,compared to the Navier-Stokes transport equation,the fluid dynamics equation derived from the LBE model is somewhat different in the viscosity transport term,which contains not only the Navier-Stokes transport equation but also nonsteady pressure and momentum flux terms.The two nonsteady terms can produce the same function as the random stirring force term introduced in the direct numerical or large-eddy vortex simulation of turbulence.Through computation of a circular cylinder,it is verified that the influence of the two nonsteady terms on flow field stability cannot be ignored,which is helpful for the study of turbulence.  相似文献   

7.
8.
Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.  相似文献   

9.
A new model of particle yield stress including cohesive strength is proposed, which considers the friction and cohesive strength between particles. A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given, and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example, and the calculation method is verified.  相似文献   

10.
Fresh cement mortar is a type of workable paste,which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering.In this paper,Papanastasiou’s model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model(MRT-LB).Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou’s model provides a good approximation of realistic Bingham plastics for values of m108.For lower values of m,Papanastasiou’s model is valid for fluids between Bingham and Newtonian fluids.The MRT-LB model is validated by two benchmark problems:2D steady Poiseuille flows and lid-driven cavity flows.Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability.We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle.Besides the rich flow structures obtained in this work,the dynamics fluid force on the round particle is calculated.Results show that both the Reynolds number Re and the Bingham number Bn afect the drag coefcients CD,and a drag coefcient with Re and Bn being taken into account is proposed.The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed.Finally,the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields.These results help simulation of fresh concrete flowing in porous media.  相似文献   

11.
在气粒两相平板混合层流动中,对气相流动采用大涡模拟,对颗粒相流动采用轨道模拟,研究了两相脉动关联矩。由两相各自瞬时速度出发可以直接获得两相脉动关联矩的统计结果。模拟获得的颗粒相一阶矩、二阶矩以及两相脉动关联矩与实验结果定量符合,表明基于细观模拟是不通过模型获得和研究两相脉动关联矩的可行途径。  相似文献   

12.
本文采用PIV测量技术研究充分发展水平槽道内的两相湍流的变动规律(Re=590)。首先将单相湍流的测量结果与文献中DNS的结果进行了比较,证明了PIV测量湍流脉动的可行性,并通过引入PTV算法获得了近壁对数边界层内的湍流量。对两相流动的测量结果表明,即使在1%的低颗粒质量载荷下,气体湍流已有明显的变动,并且壁面附近和槽道中心的变动规律不同。  相似文献   

13.
We investigate the turbulence modulation by particles in a turbulent two-phase channel flow via an analysis of turbulence anisotropy-invariants. The fluid turbulence is calculated by a large eddy simulation with a point-force two-way coupling model and particles are tracked by the Lagrangian trajectory method. The channel turbulence follows the two-component turbulence state within the viscous sub-layer region and outside the region the turbulence tends to follow the right curve of the anisotropy-invariant....  相似文献   

14.
应用GAO-YONG可压缩湍流模式数值模拟RAE2822翼型绕流   总被引:3,自引:0,他引:3  
闫文辉  闫巍  高歌 《计算物理》2008,25(6):694-700
应用Gao-Yong可压缩湍流模式,数值模拟RAE2822二维翼型在两种不同来流情况下的跨音速粘性绕流问题.湍流模式的对流项用ROE格式离散,扩散项用中心差分格式离散,空间离散后的控制方程用多步Runge-Kutta显式时间推进格式求解.计算结果预测了翼型表面的压力系数的分布、平均速度剖面、激波的位置、马赫数等值线等情况.同时,对翼型表面激波与边界层相互干扰以及转捩问题进行分析计算,结果表明,Gao-Yong可压缩湍流模式结合适当的数值方法能够成功地模拟翼型跨音速粘性流动.最后,基于Gao-Yong可压缩湍流模式各项异性湍流粘性的机理,初步提出一种预测转捩起始位置的方法.  相似文献   

15.
有旋湍流场中湍流模型应用的研究   总被引:4,自引:0,他引:4  
本文通过对三种双时间尺度湍流模型的理论分析,选择出最合理的模型,并在其基础上引入非线性Reynolds应力─应变关系式及梯度Richardson数修正,对有旋湍流场进行计算,其结果表明,双时间尺度模型能较好地预测出复杂湍流场中平均物理量的分布,尤其对回流区大小和强度的预测较常规k-ε模型结果有很大改进。因此,本文将双时间尺度模型应用于旋流燃烧器中气体颗粒两相流动的计算。  相似文献   

16.
了解有旋和无旋突扩气粒两相详细湍流结构对控制燃料-空气混合、火焰稳定以及燃烧污染物生成很重要.周力行等曾经对其中的两相时平均流场和湍流特性进行过雷诺平均的RANS模拟和测量的研究,但是BANS模拟不能给出详细的两相湍流的瞬态结构.本文建立了二阶矩两相亚网格尺度应力模型,对有旋和无旋同轴突扩气粒两相流动进行了双流体大涡模...  相似文献   

17.
用雷诺应力方程模型和极细的网格系对单个颗粒受湍流气体绕流进行了数值模拟,研究了改变颗粒直径和气体相对速度时颗粒增强气体湍流的规律.据此构造了颗粒尾涡增强气体湍流的新模型.将此子模型加入到两相流动模型中,对竖直和水平通道内气粒两相流动进行了数值模拟,和实验结果的对照表明,考虑颗粒尾涡增强气体湍流效应得到的气体湍流脉动速度的模拟结果比不考虑此效应的模拟结果好得多.  相似文献   

18.
本文提出了两相流气相湍流变动的双时间尺度耗散模型,包括气相耗散率的双时间尺度耗散模型和两相速度关联的双时间尺度各向异性耗散模型。用所提出封闭模型模拟了旋流数为0.47的气粒两相流动,发现所提出的湍流变动模型对气相脉动速度的预报结果比原有的单时间尺度模型的预报结果有明显的改进,但是颗粒尾涡的作用仍然需要进一步研究。  相似文献   

19.
对空间发展的气固两相圆湍射流进行了双向耦合的大涡模拟,采用对拖拽力源项扰动进行频谱分析的方法揭示了大小颗粒对气相湍流不同调制规律的物理机制.结果表明:大颗粒的拖拽力源项扰动具有较强的低频特征,其与上游区域以大尺度涡为特征的气相低频特征一致,从而强化了气相湍流,而小颗粒却类似无特征频率的噪声,难以与气相脉动特征发生正向耦合而弱化了气相湍流.  相似文献   

20.
DSM-LPDF两相湍流模型及旋流两相流动的模拟   总被引:2,自引:0,他引:2  
本文由流体-颗粒速度的拉氏联合概率密度函数(PDF)输运方程出发,用Simonin建议的Langevin模型封闭颗粒所遇到流体瞬时速度的条件期望项,并用Monte Carlo方法直接求解 PDF输运方程,将其和求解流体雷诺应力方程模型的有限差分方法结合,建立了雷诺应力-拉氏PDF(DSM-LPDF,简称DL)两相湍流模型.用此模型模拟了旋流数为0.47的突扩旋流气粒两相流动,并与文献中PDPA实验和用类似于单相流动湍流模型封闭方法的时平均统一二阶矩(USM)模型的预报进行了对比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号